This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383733 #15 Aug 09 2025 22:39:13 %S A383733 42,0,0,18,186,66,0,234,930,750,0,2244,4578,6498,120 %N A383733 Number of proper 3-colorings of the generalized chorded cycle graph C_n^{(3)}. %C A383733 The sequence counts the exact number of proper vertex colorings using 3 colors of circular chord graphs C_n^(3), defined as cycle graphs C_n with chords connecting vertices at offset 3 (vertices i and i+3 mod n), and with diametric edges added for even n. %C A383733 Notably, the sequence displays modular phase transitions and recurring zeros for even values of n divisible by 4 (n=8,12,16,...). These zeros occur due to structural constraints from chords and diametric edges preventing any valid 3-colorings. %C A383733 The observed modular non-monotone pattern is unique and does not match known classical graph families, motivating deeper combinational and algebraic investigations. %C A383733 Empirical analysis using the transfer matrix method indicates that the sequence a(n) = P(C_n^(3), 3) satisfies a linear recurrence relation of finite order. Specifically, the number of 3-colorings of C_n^(3) can be represented using adjacency-like matrices encoding local constraints imposed by chords and diametric edges. %C A383733 Formally, let T be the transfer matrix representing transitions of valid colorings between successive vertices or segments of the graph. The count a(n) corresponds to a trace or specific linear combination of powers of T: a(n) = Tr(M * T^n), for some suitable projection matrix M, capturing the graph's cyclical boundary conditions and additional chord and diameter constraints. %C A383733 The minimal polynomial of the transfer matrix T dictates the order of this recurrence. Although computationally validated for initial terms, determining an explicit closed-form solution or exact minimal polynomial and recurrence relation analytically remains an open combinational and algebraic problem. %D A383733 N. L. Biggs, Algebraic Graph Theory. Cambridge University Press, 2nd ed., 1993. %D A383733 D. B. West, Introduction to Graph Theory. Prentice Hall, 2nd ed., 2001. %D A383733 R. J. Wilson, Graph Theory. Longman, 5th impression, 1996. %H A383733 G. D. Birkhoff, <a href="https://www.jstor.org/stable/1967597">A determinant formula for the number of ways of coloring a map</a>, Ann. Math., 14:42-46. %H A383733 Ronald C. Read, <a href="https://doi.org/10.1016/S0021-9800(68)80087-0">An Introduction to Chromatic Polynomials</a>, Journal of Combinatorial Theory, 4(1968),52-71. %e A383733 For n=6, consider the graph C_6^(3), constructed as follows: %e A383733 - Start with a cycle graph (hexagon) having vertices labeled {0,1,2,3,4,5}. %e A383733 - Add chords connecting vertex i with vertex i+3 mod 6, forming edges (0,3), (1,4), (2,5). %e A383733 - Since n is even, include diametric edges connecting opposite vertices: edges (0,3), (1,4), (2,5). (Note these diametric edges coincide with chords for n=6.) %e A383733 The resulting graph is symmetric and moderately dense. Enumerating explicitly all possible vertex-coloring assignments with exactly three colors, we find precisely 42 distinct valid 3-colorings (each satisfying the condition that no two adjacent vertices share the same color). %e A383733 Thus, a(6)=42. %p A383733 with(GraphTheory): %p A383733 Cn3_graph := proc(n) %p A383733 local G, i; %p A383733 G := CycleGraph(n); %p A383733 for i from 0 to n-1 do %p A383733 AddEdge(G, {i, (i+3) mod n}); %p A383733 end do; %p A383733 if modp(n, 2) = 0 then %p A383733 for i from 0 to n/2 - 1 do %p A383733 AddEdge(G, {i, (i + n/2) mod n}); %p A383733 end do; %p A383733 end if; %p A383733 return G; %p A383733 end proc: %p A383733 a := proc(n) local G; %p A383733 G := Cn3_graph(n); %p A383733 return ChromaticPolynomial(G, 3); %p A383733 end proc: %p A383733 # Compute initial terms from n=6 to n=20: %p A383733 seq(a(n), n=6..20); %t A383733 Cn3Graph[n_] := Module[{g, edges, i}, %t A383733 edges = Table[{i, Mod[i + 1, n]}, {i, 0, n - 1}]; (* Cycle edges *) %t A383733 edges = Join[edges, Table[{i, Mod[i + 3, n]}, {i, 0, n - 1}]]; (* Chord edges *) %t A383733 If[EvenQ[n], %t A383733 edges = Join[edges, Table[{i, Mod[i + n/2, n]}, {i, 0, n/2 - 1}]] %t A383733 ]; %t A383733 Graph[edges, VertexLabels -> "Name"] %t A383733 ]; %t A383733 a[n_] := Length@Select[ %t A383733 Tuples[{1, 2, 3}, n], %t A383733 And @@ (#[[#[[1]] + 1]] != #[[#[[2]] + 1]] & /@ %t A383733 EdgeList[Cn3Graph[n]] /. {x_, y_} :> {x, y}) %t A383733 ] &; %t A383733 (* Generate terms for n from 6 to 20 *) %t A383733 Table[a[n], {n, 6, 20}] %o A383733 (Python) %o A383733 # Illustrative brute-force check for small n using networkx %o A383733 import networkx as nx %o A383733 from itertools import product %o A383733 def Cn_k_graph(n, k): %o A383733 G = nx.cycle_graph(n) %o A383733 for i in range(n): %o A383733 G.add_edge(i, (i+k)%n) %o A383733 if n % 2 == 0: %o A383733 for i in range(n//2): %o A383733 G.add_edge(i, i+n//2) %o A383733 return G %o A383733 def count_colorings(G, colors=3): %o A383733 nodes = list(G.nodes()) %o A383733 count = 0 %o A383733 for coloring in product(range(colors), repeat=len(nodes)): %o A383733 if all(coloring[u] != coloring[v] for u,v in G.edges()): %o A383733 count += 1 %o A383733 return count %o A383733 # Example usage: %o A383733 for n in range(6, 21): %o A383733 G = Cn_k_graph(n, 3) %o A383733 print(f'n={n}, colorings={count_colorings(G)}') %Y A383733 Cf. A000670 (number of preferential arrangements), A001047 (chromatic polynomial of cycles at x=3), A003049 (chromatic polynomial of complete graphs), A129912 (number of 3-colorings of certain circulant graphs). %Y A383733 Related to chromatic polynomial evaluations and modular coloring patterns not captured by standard families. May also be compared to sequences involving nonzero chromatic roots and Beraha numbers. %K A383733 nonn,hard,more %O A383733 6,1 %A A383733 _Rogelio Lopez Bonilla_, May 07 2025