cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383733 Number of proper 3-colorings of the generalized chorded cycle graph C_n^{(3)}.

This page as a plain text file.
%I A383733 #15 Aug 09 2025 22:39:13
%S A383733 42,0,0,18,186,66,0,234,930,750,0,2244,4578,6498,120
%N A383733 Number of proper 3-colorings of the generalized chorded cycle graph C_n^{(3)}.
%C A383733 The sequence counts the exact number of proper vertex colorings using 3 colors of circular chord graphs C_n^(3), defined as cycle graphs C_n with chords connecting vertices at offset 3 (vertices i and i+3 mod n), and with diametric edges added for even n.
%C A383733 Notably, the sequence displays modular phase transitions and recurring zeros for even values of n divisible by 4 (n=8,12,16,...). These zeros occur due to structural constraints from chords and diametric edges preventing any valid 3-colorings.
%C A383733 The observed modular non-monotone pattern is unique and does not match known classical graph families, motivating deeper combinational and algebraic investigations.
%C A383733 Empirical analysis using the transfer matrix method indicates that the sequence a(n) = P(C_n^(3), 3) satisfies a linear recurrence relation of finite order. Specifically, the number of 3-colorings of C_n^(3) can be represented using adjacency-like matrices encoding local constraints imposed by chords and diametric edges.
%C A383733 Formally, let T be the transfer matrix representing transitions of valid colorings between successive vertices or segments of the graph. The count a(n) corresponds to a trace or specific linear combination of powers of T: a(n) = Tr(M * T^n), for some suitable projection matrix M, capturing the graph's cyclical boundary conditions and additional chord and diameter constraints.
%C A383733 The minimal polynomial of the transfer matrix T dictates the order of this recurrence. Although computationally validated for initial terms, determining an explicit closed-form solution or exact minimal polynomial and recurrence relation analytically remains an open combinational and algebraic problem.
%D A383733 N. L. Biggs, Algebraic Graph Theory. Cambridge University Press, 2nd ed., 1993.
%D A383733 D. B. West, Introduction to Graph Theory. Prentice Hall, 2nd ed., 2001.
%D A383733 R. J. Wilson, Graph Theory. Longman, 5th impression, 1996.
%H A383733 G. D. Birkhoff, <a href="https://www.jstor.org/stable/1967597">A determinant formula for the number of ways of coloring a map</a>, Ann. Math., 14:42-46.
%H A383733 Ronald C. Read, <a href="https://doi.org/10.1016/S0021-9800(68)80087-0">An Introduction to Chromatic Polynomials</a>, Journal of Combinatorial Theory, 4(1968),52-71.
%e A383733 For n=6, consider the graph C_6^(3), constructed as follows:
%e A383733 - Start with a cycle graph (hexagon) having vertices labeled {0,1,2,3,4,5}.
%e A383733 - Add chords connecting vertex i with vertex i+3 mod 6, forming edges (0,3), (1,4), (2,5).
%e A383733 - Since n is even, include diametric edges connecting opposite vertices: edges (0,3), (1,4), (2,5). (Note these diametric edges coincide with chords for n=6.)
%e A383733 The resulting graph is symmetric and moderately dense. Enumerating explicitly all possible vertex-coloring assignments with exactly three colors, we find precisely 42 distinct valid 3-colorings (each satisfying the condition that no two adjacent vertices share the same color).
%e A383733 Thus, a(6)=42.
%p A383733 with(GraphTheory):
%p A383733 Cn3_graph := proc(n)
%p A383733 local G, i;
%p A383733 G := CycleGraph(n);
%p A383733 for i from 0 to n-1 do
%p A383733     AddEdge(G, {i, (i+3) mod n});
%p A383733 end do;
%p A383733 if modp(n, 2) = 0 then
%p A383733     for i from 0 to n/2 - 1 do
%p A383733         AddEdge(G, {i, (i + n/2) mod n});
%p A383733     end do;
%p A383733 end if;
%p A383733 return G;
%p A383733 end proc:
%p A383733 a := proc(n) local G;
%p A383733 G := Cn3_graph(n);
%p A383733 return ChromaticPolynomial(G, 3);
%p A383733 end proc:
%p A383733 # Compute initial terms from n=6 to n=20:
%p A383733 seq(a(n), n=6..20);
%t A383733 Cn3Graph[n_] := Module[{g, edges, i},
%t A383733   edges = Table[{i, Mod[i + 1, n]}, {i, 0, n - 1}]; (* Cycle edges *)
%t A383733   edges = Join[edges, Table[{i, Mod[i + 3, n]}, {i, 0, n - 1}]]; (* Chord edges *)
%t A383733   If[EvenQ[n],
%t A383733    edges = Join[edges, Table[{i, Mod[i + n/2, n]}, {i, 0, n/2 - 1}]]
%t A383733   ];
%t A383733   Graph[edges, VertexLabels -> "Name"]
%t A383733 ];
%t A383733 a[n_] := Length@Select[
%t A383733   Tuples[{1, 2, 3}, n],
%t A383733   And @@ (#[[#[[1]] + 1]] != #[[#[[2]] + 1]] & /@
%t A383733     EdgeList[Cn3Graph[n]] /. {x_, y_} :> {x, y})
%t A383733 ] &;
%t A383733 (* Generate terms for n from 6 to 20 *)
%t A383733 Table[a[n], {n, 6, 20}]
%o A383733 (Python)
%o A383733 # Illustrative brute-force check for small n using networkx
%o A383733 import networkx as nx
%o A383733 from itertools import product
%o A383733 def Cn_k_graph(n, k):
%o A383733     G = nx.cycle_graph(n)
%o A383733     for i in range(n):
%o A383733         G.add_edge(i, (i+k)%n)
%o A383733     if n % 2 == 0:
%o A383733         for i in range(n//2):
%o A383733             G.add_edge(i, i+n//2)
%o A383733     return G
%o A383733 def count_colorings(G, colors=3):
%o A383733     nodes = list(G.nodes())
%o A383733     count = 0
%o A383733     for coloring in product(range(colors), repeat=len(nodes)):
%o A383733         if all(coloring[u] != coloring[v] for u,v in G.edges()):
%o A383733             count += 1
%o A383733     return count
%o A383733 # Example usage:
%o A383733 for n in range(6, 21):
%o A383733     G = Cn_k_graph(n, 3)
%o A383733     print(f'n={n}, colorings={count_colorings(G)}')
%Y A383733 Cf. A000670 (number of preferential arrangements), A001047 (chromatic polynomial of cycles at x=3), A003049 (chromatic polynomial of complete graphs), A129912 (number of 3-colorings of certain circulant graphs).
%Y A383733 Related to chromatic polynomial evaluations and modular coloring patterns not captured by standard families. May also be compared to sequences involving nonzero chromatic roots and Beraha numbers.
%K A383733 nonn,hard,more
%O A383733 6,1
%A A383733 _Rogelio Lopez Bonilla_, May 07 2025