cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383735 Array read by antidiagonals, where each row is the cluster series for percolation on the cells of a certain type of polyominoids.

This page as a plain text file.
%I A383735 #8 May 14 2025 13:27:47
%S A383735 1,0,1,0,2,1,0,2,0,1,0,2,0,2,1,0,2,0,2,4,1,0,2,0,2,12,6,1,0,2,0,2,24,
%T A383735 18,0,1,0,2,0,2,52,48,0,4,1,0,2,0,2,108,126,0,12,4,1,0,2,0,2,224,300,
%U A383735 0,24,12,8,1,0,2,0,2,412,762,0,52,24,32,0,1
%N A383735 Array read by antidiagonals, where each row is the cluster series for percolation on the cells of a certain type of polyominoids.
%C A383735 T(n,k) is the coefficient of p^(k+1), k >= 0, in the power series expansion of the expected finite size of the cluster containing a given cell for percolation with probability p on the polyominoid cells corresponding to row n of A366766. If the given cell is not open, its cluster is empty. Equivalently, T(n,k) can be taken to be the coefficient of p^k if we condition on the event that the given cell is open.
%C A383735 See A366766 for details on how the polyominoids are specified and on the ordering of the rows.
%H A383735 <a href="/index/Cl#cluster">Index entries for sequences related to cluster series</a>.
%F A383735 T(n,k) = [p^k] Sum_P m^2*p^(m-1)*(1-p)^j / binomial(D,d) = Sum_P m^2*(-1)^(k-m+1)*binomial(j,k-m+1) / binomial(D,d), where the sum is over all fixed polyominoids P (corresponding to row n of A366766), m is the number of cells of P, and j is the number of cells that are not in P but are adjacent to a cell in P; d is the dimension of the cells and D is the dimension of the ambient space. It is sufficient to take the sums over those P that have at most k+1 cells.
%e A383735 Array begins:
%e A383735   n\k| 0  1  2   3   4    5    6    7     8     9     10     11      12
%e A383735   ---+-----------------------------------------------------------------
%e A383735    1 | 1  0  0   0   0    0    0    0     0     0      0      0       0
%e A383735    2 | 1  2  2   2   2    2    2    2     2     2      2      2       2
%e A383735    3 | 1  0  0   0   0    0    0    0     0     0      0      0       0
%e A383735    4 | 1  2  2   2   2    2    2    2     2     2      2      2       2
%e A383735    5 | 1  4 12  24  52  108  224  412   844  1528   3152   5036   11984
%e A383735    6 | 1  6 18  48 126  300  762 1668  4216  8668  21988  43058  110832
%e A383735    7 | 1  0  0   0   0    0    0    0     0     0      0      0       0
%e A383735    8 | 1  4 12  24  52  108  224  412   844  1528   3152   5036   11984
%e A383735    9 | 1  4 12  24  52  108  224  412   844  1528   3152   5036   11984
%e A383735   10 | 1  8 32 108 348 1068 3180 9216 26452 73708 206872 563200 1555460
%e A383735   11 | 1  0  0   0   0    0    0    0     0     0      0      0       0
%e A383735   12 | 1  2  2   2   2    2    2    2     2     2      2      2       2
%Y A383735 Cf. A366766, A366767, A366768.
%Y A383735 Rows include:
%Y A383735    n | sequence for row n
%Y A383735   ---+-------------------
%Y A383735    1 | A000007
%Y A383735    2 | A040000
%Y A383735    3 | A000007
%Y A383735    4 | A040000
%Y A383735    5 | A003203
%Y A383735    6 | A003198
%Y A383735    7 | A000007
%Y A383735    8 | A003203
%Y A383735    9 | A003203
%Y A383735   10 | A003201
%Y A383735   11 | A000007
%Y A383735   12 | A040000
%Y A383735   13 | A383737
%Y A383735   14 | A003207
%Y A383735   15 | A000007
%Y A383735   16 | A003203
%Y A383735   17 | A383737
%Y A383735   18 | A383736
%Y A383735   19 | A003203
%Y A383735   20 | A003201
%Y A383735   ...
%Y A383735   31 | A000007
%Y A383735   32 | A003211
%Y A383735   33 | A003209
%Y A383735   34 | A036396
%Y A383735   35 | A003210
%Y A383735   ...
%Y A383735   38 | A036402
%Y A383735   39 | A000007
%Y A383735   40 | A040000
%Y A383735   ...
%Y A383735   43 | A000007
%Y A383735   44 | A003203
%Y A383735   ...
%Y A383735   47 | A003203
%Y A383735   48 | A003201
%K A383735 nonn,tabl
%O A383735 1,5
%A A383735 _Pontus von Brömssen_, May 10 2025