This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383738 #24 May 13 2025 23:36:51 %S A383738 0,0,0,0,8,4,40,92,352,724,2680,14192,73704,365596,2279184,14772448, %T A383738 95814976,666090624,4968057848,39029188404,314666222008,2691008701644, %U A383738 24233937684440,227514171970408,2207893435805088,22317699616364044,234907967154122528 %N A383738 Number of solutions to the n-queens puzzle in a n X n board that are not square root permutations of {n-1,...,2,1,0}. %C A383738 Each solution to the n-queens problem can be represented as a permutation of {0,1,2,...,n-1}. %C A383738 Conversely, the number of solutions to the n-queens puzzle in a n X n board that are also square root permutations of {n-1,...,2,1,0} is A033148. %C A383738 a(n) is always even because every solution to the puzzle has its own reflection in the horizontal axis, e.g., {0,2,4,1,3} and {3,1,4,2,0}. %H A383738 Darío Clavijo, <a href="https://raw.githubusercontent.com/daedalus/MyOEISPrograms/refs/heads/main/A383738.py">Python program</a>, Github. %H A383738 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/questions/266569/how-to-find-the-square-root-of-a-permutation">How to find the square root of a permutation</a> %H A383738 Wikipedia, <a href="https://en.wikipedia.org/wiki/Eight_queens_puzzle">Eight queens puzzle</a> %F A383738 a(n) = A000170(n) - A033148(n). %e A383738 For n = 5, we have: %e A383738 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 %e A383738 +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ %e A383738 0 | Q | | Q | | Q | | Q | | Q | %e A383738 1 | Q | | Q | | Q | | Q | | Q | %e A383738 2 | Q | | Q | | Q | | Q | | Q | %e A383738 3 | Q | | Q | | Q | | Q Q | | Q | %e A383738 4 | Q | | Q | | Q | | | | Q | %e A383738 +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ %e A383738 0,2,4,1,3 0,3,1,4,2 1,3,0,2,4 1,4,2,0,3 2,0,3,1,4 %e A383738 is sqrt perm: no no no yes no %e A383738 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 %e A383738 +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ %e A383738 0 | Q | | Q | | Q | | Q | | Q | %e A383738 1 | Q | | Q | | Q | | Q | | Q | %e A383738 2 | Q | | Q | | Q | | Q | | Q | %e A383738 3 | Q | | Q | | Q | | Q | | Q | %e A383738 4 | Q | | Q | | Q | | Q | | Q | %e A383738 +-----------+ +-----------+ +-----------+ +-----------+ +-----------+ %e A383738 2,4,1,3,0 3,0,2,4,1 3,1,4,2,0 4,1,3,0,2 4,2,0,3,1 %e A383738 is sqrt perm: no yes no no no %e A383738 In total there are 10 solutions for a 5 X 5 board with 5 queens, of which 8 are not square root permutations of {n-1,...,2,1,0}. %e A383738 Then, a(5) = 10. %Y A383738 Cf. A000170, A033148. %K A383738 nonn %O A383738 1,5 %A A383738 _Darío Clavijo_, May 07 2025