This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383748 #10 May 16 2025 18:51:48 %S A383748 2,3,2,2,5,2,2,2,2,2,2,2,2,7,2,2,2,2,2,2,2,2,2,2,2,2,3,2,2,3,2,2,2,2, %T A383748 3,2,2,2,3,2,3,2,2,2,3,2,11,2,2,2,3,2,2,2,2,2,2,3,3,2,2,3,2,2,2,2,3,2, %U A383748 3,2,2,2,2,3,2,2,3,13,2,3,2,2,2,2,3,2,2 %N A383748 a(n) = q is the smallest integer, such that the numbers -1/q, i/q, -i/q with i = sqrt(-1), are three zeros of the polynomial P(A783747(n),z) = Sum_{k=1..r} d(k)*z^(k-1) where d(1) < d(2), ..., < d(r) are the r divisors of A383747(n). %e A383748 n q m = A783747(n) P(m,z) 3 zeros of P(m,z) %e A383748 1 2 8 1+2z+4z^2+8z^3 -1/2, -i/2, i/2 %e A383748 2 3 27 1+3z+9z^2+27z^3 -1/3, -i/3, i/3 %e A383748 3 2 88 1+2z+4z^2+8z^3+11z^4+ -1/2, -i/2, i/2 %e A383748 22z^5+44z^6+88z^7 %p A383748 with(numtheory) : %p A383748 A:=proc(n) local P, Q, i, q, d, ii: %p A383748 d:=divisors(n):P:=add(op(i,d)*x^(i-1),i=1..nops(d)): %p A383748 ii:=0:for q from 1 to n while (ii=0) do: %p A383748 Q:=(x+1/q)*(x^2+1/q^2): %p A383748 if divide(P,Q,'R') then ii:=1: %p A383748 A(n):=q:else fi:od:end proc: %p A383748 seq(A(n), n=1..2500); %Y A383748 Cf. A027750, A291127, A383747. %K A383748 nonn %O A383748 1,1 %A A383748 _Michel Lagneau_, May 08 2025