This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383750 #24 Jun 05 2025 23:46:33 %S A383750 1,2,4,6,8,10,11,13,15,17,19,20,22,24,26,28,29,31,33,35,37,38,40,42, %T A383750 44,46,47,49,51,53,55,57,58,60,62,64,66,68,69,71,73,75,77,78,80,82,84, %U A383750 86,87,89,91,93,95,96,98,100,102,104,105,107,109,111,113,115,116,118,120 %N A383750 a(n) = number of iterations of z -> z^2 + c(n) with c(n) = 1/n + (2/(n^2))*i - 1/8 + (3*sqrt(3)/8)*i to reach |z| > 2, starting with z = 0. %C A383750 a(n)/n appears to converge to Pi/sqrt(3). %C A383750 a(n) counts the escape time of points outside the Mandelbrot set that converge to the Mandelbrot set's 1/3 period bulb. %H A383750 Luke Bennet, <a href="/A383750/b383750.txt">Table of n, a(n) for n = 1..10001</a> %H A383750 Thies Brockmöller, Oscar Scherz, and Nedim Srkalović, <a href="https://arxiv.org/abs/2505.07138">Pi in the Mandelbrot set everywhere</a>, arXiv preprint arXiv:2505.07138 [math.DS], 2025. %H A383750 Aaron Klebanoff, <a href="https://www.doc.ic.ac.uk/~jb/teaching/jmc/pi-in-mandelbrot.pdf">Pi in the Mandelbrot Set</a>, Fractals 9 (2001), nr. 4, p. 393-402. %o A383750 (Python) %o A383750 import mpmath %o A383750 from mpmath import iv %o A383750 def a(n): %o A383750 dps = 1 %o A383750 while True: %o A383750 mpmath.iv.dps = dps %o A383750 real_part = iv.mpf(1) / n - iv.mpf('0.125') %o A383750 imag_part = iv.mpf(2) / (n ** 2) + 3 * iv.sqrt(3) / 8 %o A383750 c = iv.mpc(real_part, imag_part) %o A383750 z = iv.mpc(0, 0) %o A383750 counter = 0 %o A383750 while (z.real**2 + z.imag**2).b <= 4: %o A383750 z = z ** 2 + c %o A383750 counter += 1 %o A383750 if (z.real**2 + z.imag**2).a > 4: %o A383750 return counter %o A383750 dps *= 2 %Y A383750 Cf. A093602, A097486, A384509, A384513 %K A383750 nonn %O A383750 1,2 %A A383750 _Luke Bennet_, May 08 2025