This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383756 #13 May 09 2025 11:41:36 %S A383756 1,37,925,19525,375661,6828757,119609725,2042733925,34274529421, %T A383756 567869330677,9323118394525,152047784616325,2467581667044781, %U A383756 39901653896747797,643493505828795325,10356906506162786725,166444482073618177741,2671936126059753592117 %N A383756 Expansion of 1/Product_{k=0..2} (1 - 3^k * 4^(2-k) * x). %H A383756 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (37,-444,1728). %F A383756 a(n) = A383755(n+2,2). %F A383756 a(n) = 3^(2*n) * q-binomial(n+2, 2, 4/3). %F A383756 G.f.: exp( Sum_{k>=1} f(3*k)/f(k) * x^k/k ), where f(k) = 4^k - 3^k. %F A383756 a(n) = (3*9^(n+1) - 7*12^(n+1) + 4*16^(n+1))/7. %F A383756 a(n) = 37*a(n-1) - 444*a(n-2) + 1728*a(n-3). %o A383756 (PARI) a(n) = (3*9^(n+1)-7*12^(n+1)+4*16^(n+1))/7; %o A383756 (Sage) %o A383756 def a(n): return 3^(2*n)*q_binomial(n+2, 2, 4/3) %Y A383756 Cf. A383755. %K A383756 nonn,easy %O A383756 0,2 %A A383756 _Seiichi Manyama_, May 09 2025