This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383761 #12 May 30 2025 08:02:23 %S A383761 1,2,3,2,4,5,6,7,2,8,3,9,10,11,6,12,13,14,15,2,4,17,6,18,19,10,20,21, %T A383761 22,23,6,24,5,25,26,3,27,14,28,29,30,31,2,32,33,34,35,6,12,18,36,37, %U A383761 38,39,10,40,41,42,43,22,44,15,45,46,47,6,12,7,49,10,50 %N A383761 Irregular triangle read by rows in which the n-th row lists the exponential squarefree exponential divisors of n. %C A383761 Differs from A322791, A361255 and A383760 at rows 16, 48, 80, 81, 112, 144, 162, ... . %C A383761 An exponential squarefree exponential divisor (or e-squarefree e-divisor) d of a number n is a divisor d of n such that for every prime divisor p of n, the p-adic valuation of d is a squarefree divisor of the p-adic valuation of n. %H A383761 Amiram Eldar, <a href="/A383761/b383761.txt">Table of n, a(n) for n = 1..15331</a> (first 10000 rows, flattened) %H A383761 László Tóth, <a href="https://ac.inf.elte.hu/Vol_027_2007/doi/155_27.pdf">On certain arithmetic functions involving exponential divisors, II</a>, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 27 (2007), pp. 155-166; <a href="https://arxiv.org/abs/0708.3557">arXiv preprint</a>, arXiv:0708.3557 [math.NT], 2007-2009. %e A383761 The first 10 rows are: %e A383761 1 %e A383761 2 %e A383761 3 %e A383761 2, 4 %e A383761 5 %e A383761 6 %e A383761 7 %e A383761 2, 8 %e A383761 3, 9 %e A383761 10 %t A383761 sqfDivQ[n_, d_] := SquareFreeQ[d] && Divisible[n, d]; %t A383761 expSqfDivQ[n_, d_] := Module[{f = FactorInteger[n]}, And @@ MapThread[sqfDivQ, {f[[;; , 2]], IntegerExponent[d, f[[;; , 1]]]}]]; expSqfDivs[1] = {1}; %t A383761 expSqfDivs[n_] := Module[{d = Rest[Divisors[n]]}, Select[d, expSqfDivQ[n, #] &]]; %t A383761 Table[expSqfDivs[n], {n, 1, 70}] // Flatten %Y A383761 Cf. A278908 (row lengths), A361174 (row sums). %Y A383761 Cf. A322791, A361255, A383760. %K A383761 nonn,tabf,easy %O A383761 1,2 %A A383761 _Amiram Eldar_, May 09 2025