cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A383763 The sum of unitary divisors of n that are exponentially squarefree numbers.

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12, 20, 14, 24, 24, 1, 18, 30, 20, 30, 32, 36, 24, 36, 26, 42, 28, 40, 30, 72, 32, 33, 48, 54, 48, 50, 38, 60, 56, 54, 42, 96, 44, 60, 60, 72, 48, 4, 50, 78, 72, 70, 54, 84, 72, 72, 80, 90, 60, 120, 62, 96, 80, 65, 84, 144, 68
Offset: 1

Views

Author

Amiram Eldar, May 09 2025

Keywords

Comments

The number of these divisors is A383762(n) and the largest of them is A383764(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[SquareFreeQ[e], p^e + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(issquarefree(f[i,2]), f[i,1]^f[i,2]+1, 1));}

Formula

Multiplicative with a(p^e) = p^e + 1 if e is squarefree (A005117), and 1 otherwise.
a(n) <= A034448(n), with equality if and only if n is an exponentially squarefree number (A209061).
a(n) <= A365682(n), with equality if and only if n is a squarefree number.

A383762 The number of unitary divisors of n that are exponentially squarefree numbers.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 4, 1, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 2, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 2, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 8, 2, 4, 4, 2, 4, 8, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 4, 8, 2, 2, 1, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, May 09 2025

Keywords

Comments

First differs from A365499 at n = 32.
The sum of these divisors is A383763(n) and the largest of them is A383764(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[SquareFreeQ[e], 2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(issquarefree(x), 2, 1), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = 2 if e is squarefree (A005117), and 1 otherwise.
a(n) <= A034444(n), with equality if and only if n is an exponentially squarefree number (A209061).
a(n) <= A365680(n), with equality if and only if n is a squarefree number.

A385007 The largest unitary divisor of n that is a biquadratefree number (A046100).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 3, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69
Offset: 1

Views

Author

Amiram Eldar, Jun 15 2025

Keywords

Comments

First differs from A053165 at n = 32 = 2^5: a(32) = 1 while A053165(32) = 2.
First differs from A383764 at n = 32 = 2^5: a(32) = 1 while A383764(32) = 32.
Equivalently, a(n) is the least divisor d of n such that n/d is a 4-full number (A036967).

Crossrefs

The largest unitary divisor of n that is: A000265 (odd), A006519 (power of 2), A055231 (squarefree), A057521 (powerful), A065330 (5-rough), A065331 (3-smooth), A350388 (square), A350389 (exponentially odd), A360539 (cubefree), A360540 (cubefull), A366126 (cube), A367168 (exponentially 2^n), this sequence (biquadratefree).

Programs

  • Mathematica
    f[p_, e_] := If[e < 4, p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] < 4, f[i, 1]^f[i, 2], 1)); }

Formula

a(n) = 1 if and only if n is a 4-full number (A036967).
a(n) = n if and only if n is a biquadratefree number (A046100).
Multiplicative with a(p^e) = p^e if e <= 3, and 1 otherwise.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + p^(1-s) - p^(-s) + p^(2-2*s) - p^(1-2*s) - p^(2-3*s) + p^(3-3*s) - p^(3-4*s) + p^(-4*s)).
Sum_{k=1..n} a(k) ~ c * zeta(2) * n^2 / 2, where c = Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^6 + 1/p^8 - 1/p^9) = 0.56331392082909224894... .
Showing 1-3 of 3 results.