This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383773 #5 May 21 2025 16:40:47 %S A383773 1,1,36,450,17550,744906,47753440,3909436192,410384120220, %T A383773 53323552728000,8417606908865220,1586195621597483136, %U A383773 351735343178101060906,90667504180193792086144,26884188980472806091900000,9086147124746080046118543360,3472279409772212369077001352888 %N A383773 a(n) = pos(M(n)), where M(n) is the n X n circulant matrix with (row 1) = (1, 2, ... , n), and pos(M(n)) is the positive part of the determinant of M(n); see A380661. %e A383773 The rows of M(4) are (1, 2, 3, 4), (4, 1, 2, 3), (3, 4, 1, 2), (2, 3, 4, 1); determinant(M(4)) = -160; permanent(M(4)) = 1060, so neg(M(4)) = (-160 - 1060)/2 = -610 and pos(M(4)) = (-160 + 1060)/2 = 450. %t A383773 z = 18; %t A383773 v[n_] := Table[k + 1, {k, 0, n - 1}]; %t A383773 u[n_] := Table[RotateRight[#, k - 1], {k, 1, Length[#]}] &[v[n]]; %t A383773 p = Table[Simplify[Permanent[u[n]]], {n, 1, z}] (* A085719 *) %t A383773 d = Table[Simplify[Det[u[n]]], {n, 1, z}] (* A052182 *) %t A383773 neg = (d - p)/2 (* A383772 *) %t A383773 pos = (d + p)/2 (* A383773 *) %Y A383773 Cf. A052182 (determinant), A085719 (permanent), A380661, A383772, A383774, A383775. %K A383773 nonn %O A383773 1,3 %A A383773 _Clark Kimberling_, May 17 2025