This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383782 #22 May 19 2025 09:26:30 %S A383782 4,10,30,147,408,1823,4353,17690,38419,143219,284441,980166,1806038, %T A383782 5813294,10037352,30426498,49595776,142437454,220519428,603013312, %U A383782 890961094,2329755538 %N A383782 a(n) is the number of n-digit terms in A383781. %C A383782 After the first two terms, the ratios between successive odd terms and the ratios between successive even terms are decreasing. - _Michael S. Branicky_, May 11 2025 %t A383782 Unprotect[CompositeQ]; CompositeQ[1]:=True; Protect[CompositeQ]; Q[n_]:=And[AllTrue[FromDigits/@Table[Take[IntegerDigits[n], -i], {i,IntegerLength[n],1,-2}], PrimeQ], AllTrue[FromDigits/@Table[Take[IntegerDigits[n], -i], {i,IntegerLength[ n]-1,1,-2}], CompositeQ]]; a[n_]:=Module[{p=Prime[PrimePi[10^(n-1)]+1], k=0}, While[10^(n-1)<=p<10^n-1, If[Q[p], k++]; p=NextPrime[p]]; k]; Array[a,7] %o A383782 (Python) %o A383782 from gmpy2 import is_prime, mpz %o A383782 from itertools import count, islice %o A383782 def agen(): %o A383782 olst, elst = [2, 3, 5, 7], [11, 19, 29, 31, 41, 59, 61, 71, 79, 89] %o A383782 yield from (len(olst), len(elst)) %o A383782 for n in count(1): %o A383782 olst2, elst2 = [], [] %o A383782 for o in olst: %o A383782 o, base = o, 10**(2*n-1) %o A383782 for i in range(10*base, 100*base, base): %o A383782 t = i + o %o A383782 t2 = int(str(t)[1:]) %o A383782 if is_prime(t) and not is_prime(t2): %o A383782 olst2.append(t) %o A383782 yield len(olst2) %o A383782 for e in elst: %o A383782 e, base = e, 10**(2*n) %o A383782 for i in range(10*base, 100*base, base): %o A383782 t = i + e %o A383782 t2 = int(str(t)[1:]) %o A383782 if is_prime(t) and not is_prime(t2): %o A383782 elst2.append(t) %o A383782 yield len(elst2) %o A383782 olst, elst = sorted(olst2), sorted(elst2) %o A383782 print(list(islice(agen(), 12))) # _Michael S. Branicky_, May 11 2025 %Y A383782 Cf. A383781. %K A383782 nonn,base,more %O A383782 1,1 %A A383782 _Stefano Spezia_, May 09 2025 %E A383782 a(11)-a(19) from _Michael S. Branicky_, May 11 2025 %E A383782 a(20)-a(22) from _Michael S. Branicky_, May 19 2025