cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383791 Numerators of the sequence whose Dirichlet convolution with itself yields fourth powers (A000583).

This page as a plain text file.
%I A383791 #10 May 10 2025 09:16:23
%S A383791 1,8,81,96,625,324,2401,1280,19683,2500,14641,3888,28561,9604,50625,
%T A383791 17920,83521,19683,130321,30000,194481,58564,279841,51840,1171875,
%U A383791 114244,2657205,115248,707281,101250,923521,258048,1185921,334084,1500625,236196,1874161,521284,2313441
%N A383791 Numerators of the sequence whose Dirichlet convolution with itself yields fourth powers (A000583).
%C A383791 Numerators of Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = zeta(s-4)^(1/2).
%H A383791 Vaclav Kotesovec, <a href="/A383791/b383791.txt">Table of n, a(n) for n = 1..10000</a>
%H A383791 Vaclav Kotesovec, <a href="/A383791/a383791.jpg">Graph - the asymptotic ratio (10000 terms)</a>
%F A383791 Sum_{k=1..n} A383791(k) / A383792(k) ~ n^5 / (5*sqrt(Pi*log(n))) * (1 + (1/5 - gamma/2)/(2*log(n))), where gamma is the Euler-Mascheroni constant A001620.
%o A383791 (PARI) for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-p^4*X)^(1/2))[n]), ", "))
%Y A383791 Cf. A000583, A383792 (denominators).
%Y A383791 Cf. A299149, A299150, A318649, A318512, A383768, A383769.
%K A383791 nonn,frac
%O A383791 1,2
%A A383791 _Vaclav Kotesovec_, May 10 2025