This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383791 #10 May 10 2025 09:16:23 %S A383791 1,8,81,96,625,324,2401,1280,19683,2500,14641,3888,28561,9604,50625, %T A383791 17920,83521,19683,130321,30000,194481,58564,279841,51840,1171875, %U A383791 114244,2657205,115248,707281,101250,923521,258048,1185921,334084,1500625,236196,1874161,521284,2313441 %N A383791 Numerators of the sequence whose Dirichlet convolution with itself yields fourth powers (A000583). %C A383791 Numerators of Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = zeta(s-4)^(1/2). %H A383791 Vaclav Kotesovec, <a href="/A383791/b383791.txt">Table of n, a(n) for n = 1..10000</a> %H A383791 Vaclav Kotesovec, <a href="/A383791/a383791.jpg">Graph - the asymptotic ratio (10000 terms)</a> %F A383791 Sum_{k=1..n} A383791(k) / A383792(k) ~ n^5 / (5*sqrt(Pi*log(n))) * (1 + (1/5 - gamma/2)/(2*log(n))), where gamma is the Euler-Mascheroni constant A001620. %o A383791 (PARI) for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-p^4*X)^(1/2))[n]), ", ")) %Y A383791 Cf. A000583, A383792 (denominators). %Y A383791 Cf. A299149, A299150, A318649, A318512, A383768, A383769. %K A383791 nonn,frac %O A383791 1,2 %A A383791 _Vaclav Kotesovec_, May 10 2025