This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383798 #39 Jun 22 2025 18:17:08 %S A383798 1,630360016,1549035330,264620982,529512731,1896697821,2116530888, %T A383798 1923129168,1674201058,108088067,859154222,1946499387,1377890442, %U A383798 1382793310,768302678,1014576563,514017889,2050350098,1928578391,863848128,246801402,166165530,709020555 %N A383798 Consecutive states of the linear congruential pseudo-random number generator for SIMSCRIPT II when started at 1. %C A383798 Periodic with period 2^31-2. %D A383798 P. J. Kiviat, R. Villanueva, and H. Markowitz, The Simscript II Programming Language, Prentice-Hall, 1969. %H A383798 Alois P. Heinz, <a href="/A383798/b383798.txt">Table of n, a(n) for n = 1..10000</a> %H A383798 George S. Fishman and Louis R. Moore, <a href="https://doi.org/10.2307/2287778">A Statistical Evaluation of Multiplicative Congruential Random Number Generators with Modulus 2^31-1</a>, J American Statistical Assoc., 77, 377 (1982), 129-136. %H A383798 Pierre L'Ecuyer, <a href="https://doi.org/10.1145/62959.62969">Efficient and portable combined random number generators</a>, Commun. ACM, 31, 6 (1988), 742-749 and 774. %H A383798 B. D. Ripley, <a href="https://doi.org/10.2307/1402590">Computer Generation of Random Variables: A Tutorial</a>, International Statistical Review, 51 (1983), 301-309. %H A383798 B. D. Ripley, <a href="https://doi.org/10.1016/0377-0427(90)90346-2">Thoughts on pseudorandom number generators</a>, J of Computational and Applied Mathematics, 31, 1 (1990), 153-163. %H A383798 <a href="/index/Ps#PRN">Index entries for sequences related to pseudo-random numbers</a>. %F A383798 a(n) = 630360016 * a(n-1) mod (2^31-1). %p A383798 a:= proc(n) option remember; `if`(n<2, n, %p A383798 irem(630360016*a(n-1), 2^31-1)) %p A383798 end: %p A383798 seq(a(n), n=1..23); # _Alois P. Heinz_, May 29 2025 %t A383798 RecurrenceTable[{a[1]==1,a[n]==Mod[a[n-1]*630360016,(2^31-1)]},a,{n,1,30}] (* _Vincenzo Librandi_, May 29 2025 *) %o A383798 (Magma) [n le 1 select 1 else 630360016 * Self(n-1) mod (2^31-1): n in [1..30]]; // _Vincenzo Librandi_, May 29 2025 %Y A383798 Cf. A096550, A384406. %K A383798 nonn,easy %O A383798 1,2 %A A383798 _Sean A. Irvine_, May 28 2025