This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383802 #13 May 11 2025 09:25:58 %S A383802 1,1,2,2,6,8,21,36,84,164,356,691,1361,2342,3707,4830,5082,3843,2128, %T A383802 798,248,50,12,1,1 %N A383802 Number of polyforms with n cells on the faces of a tetrakis hexahedron up to rotation and reflection. %C A383802 These are "free" polyforms. %C A383802 The tetrakis hexahedron is the polyhedral dual of the truncated octahedron. %H A383802 Peter Kagey, <a href="/A383802/a383802.pdf">Example of a(5)=8</a>. %H A383802 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tetrakis_hexahedron">Tetrakis hexahedron</a> %Y A383802 Cf. A383803 (one-sided). %Y A383802 Octahedral symmetry: A333333 (row 3), A383800, A383802, A383804, A383806. %Y A383802 Icosahedral symmetry: A030135, A030136, A340635, A383490, A383492, A383494, A383496. %Y A383802 Cf. A197465 (tetrakis square tiling). %K A383802 nonn,fini,full %O A383802 0,3 %A A383802 _Peter Kagey_, May 10 2025