This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383806 #15 Jun 08 2025 15:19:14 %S A383806 1,1,3,3,9,14,38,74,184,406,981,2262,5398,12589,29700,69289,161727, %T A383806 373879,858884,1948493,4358729,9560977,20489431,42663444,85863997, %U A383806 165915428,305531365,531313203,863339197,1294513104,1765472012,2153407639,2304457468,2119172241,1641722694 %N A383806 Number of polyforms with n cells on the faces of a disdyakis dodecahedron up to rotation and reflection. %C A383806 These are "free" polyforms. %C A383806 The disdyakis dodecahedron is the polyhedral dual of the truncated cuboctahedron. %H A383806 Bert Dobbelaere, <a href="/A383806/b383806.txt">Table of n, a(n) for n = 0..48</a> %H A383806 Peter Kagey, <a href="/A383806/a383806.pdf">Example of a(4)=9</a>. %H A383806 Wikipedia, <a href="https://en.wikipedia.org/wiki/Disdyakis_dodecahedron">Disdyakis dodecahedron</a> %Y A383806 Cf. A383807 (one-sided). %Y A383806 Octahedral symmetry: A333333 (row 3), A383800, A383802, A383804, A383806. %Y A383806 Icosahedral symmetry: A030135, A030136, A340635, A383490, A383492, A383494, A383496. %K A383806 nonn,fini,full %O A383806 0,3 %A A383806 _Peter Kagey_, May 10 2025 %E A383806 More terms from _Bert Dobbelaere_, Jun 08 2025