cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383812 Primes which satisfy the requirements of A380943 in exactly three ways.

This page as a plain text file.
%I A383812 #10 May 27 2025 23:44:34
%S A383812 19937,103997,377477,577937,738677,739397,877937,2116397,3110273,
%T A383812 3314513,3343337,3634313,3833359,5935393,7147397,7276337,7511033,
%U A383812 7699157,7723337,11816911,14713613,19132213,19132693,19998779,22739317,23201359,31189757,31614377,31669931,31687151
%N A383812 Primes which satisfy the requirements of A380943 in exactly three ways.
%C A383812 The requirements of A380943 are that primes, p_n, written in decimal representation by the concatenation of primes p and q such that the concatenation of q and p also forms a prime.
%C A383812 The number of terms <= 10^k beginning with k=1: 0, 0, 0, 0, 1, 7, 19, 70, 299, 1872, ..., .
%t A383812 f[n_] := Block[{cnt = 0, id = IntegerDigits@ n, k = 1, len, p, q, qp}, len = Length@ id; While[k < len, p = Take[id, k]; q = Take[id, -len + k]; qp = FromDigits[ Join[q, p]]; If[ PrimeQ[FromDigits[p]] && PrimeQ[FromDigits[q]] && PrimeQ[qp] && IntegerLength[qp] == len, cnt++]; k++]; cnt];Select[ Prime@ Range@ 1980000, f@# == 3 &]
%Y A383812 Cf. A000040, A238499, A380943, A383810, A383811, A383813, A383814, A383815, A383816.
%K A383812 nonn,base
%O A383812 1,1
%A A383812 _James C. McMahon_ and _Robert G. Wilson v_, May 18 2025