A383815 Palindromic primes in A380943.
313, 373, 797, 11311, 13331, 13931, 17971, 19991, 31013, 35353, 36263, 36563, 38783, 71317, 79397, 97379, 98389, 1129211, 1196911, 1611161, 1793971, 1982891, 3106013, 3166613, 3193913, 3236323, 3288823, 3304033, 3319133, 3329233, 3365633, 3417143, 3447443, 3449443, 3515153, 3670763
Offset: 1
Examples
The palindromic prime 313 is formed by the concatenation of the primes 31 and 3, which reversed, also form the prime 331. The palindromic prime 13931 is formed by the concatenation of 139 and 31; 31139 is also prime.
Programs
-
Maple
rev:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc: tcat:= proc(x,y) y + 10^(ilog10(y)+1)*x end proc: filter:= proc(z) local i,x,y; if not isprime(z) then return false fi; for i from 1 to ilog10(z) do x:= z mod 10^i; if x < 10^(i-1) then next fi; y:= (z-x)/10^i; if isprime(x) and isprime(y) and isprime(tcat(x,y)) then return true fi; od; false end proc: N:= 7: # for terms of up to 7 digits R:= NULL: for d from 1 to (N-1)/2 do for x from 10^(d-1) to 10^d-1 do for y from 0 to 9 do z:= rev(x) + 10^d * y + 10^(d+1)*x; if filter(z) then R:= R,z fi od od od: R; # Robert Israel, Jun 08 2025
-
Mathematica
f[n_] := Block[{cnt = 0, id = IntegerDigits@ n, k = 1, len, p, q, qp}, len = Length@ id; While[k < len, p = Take[id, k]; q = Take[id, -len + k]; qp = FromDigits[Join[q, p]]; If[ PrimeQ@ FromDigits@ p && PrimeQ@ FromDigits@ q && PrimeQ@ qp && IntegerLength@ qp == len, cnt++]; k++]; cnt]; fQ[n_] := Reverse[idn = IntegerDigits@ n] == idn && f@ n > 0; Select[ Prime@ Range@ 264000, fQ]
Comments