cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383833 Area of the unique primitive Pythagorean triple whose inradius is A000217(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

This page as a plain text file.
%I A383833 #13 Jul 13 2025 17:21:48
%S A383833 0,6,84,546,2310,7440,19866,46284,97236,188370,341880,588126,967434,
%T A383833 1532076,2348430,3499320,5086536,7233534,10088316,13826490,18654510,
%U A383833 24813096,32580834,42277956,54270300,68973450,86857056,108449334,134341746,165193860,201738390
%N A383833 Area of the unique primitive Pythagorean triple whose inradius is A000217(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
%D A383833 Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2025.
%H A383833 Miguel-Ángel Pérez García-Ortega, <a href="/A383833/a383833.pdf">El Libro de las Ternas Pitagóricas</a>
%F A383833 a(n) = A000217(n) * (A000217(n) + 1) * (2*A000217(n) + 1).
%e A383833 For n=1, the short leg is A002061(1) = 3 and the long leg is A212135(2) = 4 so the area is then a(1) = (3 * 4 )/2 = 6.
%t A383833 a=Table[(n(n+1))/2,{n,0,30}];Apply[Join,Map[{#(#+1)(2#+1)}&,a]]
%Y A383833 Cf. A000217, A002061, A058919, A383834, A336535.
%K A383833 nonn,easy
%O A383833 0,2
%A A383833 _Miguel-Ángel Pérez García-Ortega_, May 11 2025