This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383843 #22 May 15 2025 08:17:09 %S A383843 1,1,0,1,2,0,1,6,3,0,1,12,23,4,0,1,20,86,72,5,0,1,30,230,480,201,6,0, %T A383843 1,42,505,2000,2307,522,7,0,1,56,973,6300,14627,10044,1291,8,0,1,72, %U A383843 1708,16464,65002,95060,40792,3084,9,0,1,90,2796,37632,227542,587580,567240,157440,7181,10,0 %N A383843 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of 1/Product_{j=0..k} (1 - j*x)^2. %F A383843 A(n,k) = Sum_{j=0..n} Stirling2(j+k,k) * Stirling2(n-j+k,k). %e A383843 Square array begins: %e A383843 1, 1, 1, 1, 1, 1, 1, ... %e A383843 0, 2, 6, 12, 20, 30, 42, ... %e A383843 0, 3, 23, 86, 230, 505, 973, ... %e A383843 0, 4, 72, 480, 2000, 6300, 16464, ... %e A383843 0, 5, 201, 2307, 14627, 65002, 227542, ... %e A383843 0, 6, 522, 10044, 95060, 587580, 2725380, ... %e A383843 0, 7, 1291, 40792, 567240, 4817990, 29331038, ... %o A383843 (PARI) a(n, k) = sum(j=0, n, stirling(j+k, k, 2)*stirling(n-j+k, k, 2)); %Y A383843 Columns k=0..4 give A000007, A000027(n+1), A045618, A383841, A383842. %Y A383843 Main diagonal gives A350376. %Y A383843 A(n,n-1) gives A383880. %Y A383843 Cf. A106800, A287532. %K A383843 nonn,tabl %O A383843 0,5 %A A383843 _Seiichi Manyama_, May 12 2025