A383851 Decimal expansion of exp(8*G/Pi)*((1 - exp(-Pi/2))/(1 + exp(-Pi/2)))^2, where G is Catalan's constant (A006752).
4, 4, 3, 1, 2, 0, 1, 3, 0, 7, 1, 9, 4, 1, 9, 9, 1, 9, 7, 0, 8, 2, 3, 6, 7, 7, 2, 8, 3, 5, 5, 2, 8, 7, 2, 9, 3, 2, 8, 3, 8, 0, 1, 5, 2, 8, 1, 0, 1, 2, 2, 7, 4, 7, 3, 5, 6, 3, 2, 0, 9, 2, 1, 4, 3, 8, 9, 6, 8, 0, 7, 5, 8, 5, 8, 7, 0, 0, 3, 6, 5, 3, 8, 3, 2, 5, 6, 4, 2, 0
Offset: 1
Examples
4.4312013071941991970823677283552872932838015281012...
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Michael Penn, A beautiful Ramanujan product, YouTube video, 2025.
Programs
-
Mathematica
First[RealDigits[Exp[8*Catalan/Pi]*((1 - #)/(1 + #))^2 & [Exp[-Pi/2]], 10, 100]]
Formula
Equals Product_{i=0..oo} (1 + 4/(2*i+1)^4)^((-1)^i*(2*i+1)) (from Ramanujan).