cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383861 Central angle of the solution of the Tammes problem for 24 points on the sphere (in radians).

This page as a plain text file.
%I A383861 #8 May 19 2025 15:46:20
%S A383861 7,6,2,5,4,7,7,3,8,7,5,0,9,8,2,5,5,6,7,4,3,1,0,6,0,9,2,1,1,4,8,8,2,8,
%T A383861 1,8,0,6,9,1,3,9,1,6,3,6,8,6,5,5,2,2,9,4,0,5,6,6,1,4,0,6,6,5,5,5,8,6,
%U A383861 3,8,1,8,5,9,4,2,4,3,1,2,9,4,1,8,0,2,4,4,8,6,0,4,5,9,2,2,9,6,4,9,5,7,7,9,3,5,8,9,9,8,0,6,4,2
%N A383861 Central angle of the solution of the Tammes problem for 24 points on the sphere (in radians).
%H A383861 Laslo Hars, <a href="https://www.hars.us/Papers/Numerical_Tammes.pdf">Numerical solutions of the Tammes problem for up to 60 points</a>, Nov 2020, N=24.
%H A383861 R. M. Robinson, <a href="https://doi.org/10.1007/BF01396539">Arrangements of 24 points on the sphere</a>, Math. Ann. 144 (1961) 17-48.
%H A383861 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tammes_problem">Tammes problem</a>
%F A383861 cos( this ) = (t-1)/(3-t) where t=A058265.
%e A383861 0.762547738750982556743106092114...
%p A383861 t := (1+(19+3*sqrt(33))^(1/3)+(19-3*sqrt(33))^(1/3))/3 ; arccos((t-1)/(3-t)) ; evalf(%,120);
%Y A383861 Cf. A058265, A019669 (N=6), A383859 (N=7), A381756 (N=8), A137914 (N=9), A340918 (N=10), A105199 (N=11 and N=12). A217695 (N=13), A383860 (N=14).
%K A383861 nonn,cons
%O A383861 0,1
%A A383861 _R. J. Mathar_, May 12 2025