This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383861 #8 May 19 2025 15:46:20 %S A383861 7,6,2,5,4,7,7,3,8,7,5,0,9,8,2,5,5,6,7,4,3,1,0,6,0,9,2,1,1,4,8,8,2,8, %T A383861 1,8,0,6,9,1,3,9,1,6,3,6,8,6,5,5,2,2,9,4,0,5,6,6,1,4,0,6,6,5,5,5,8,6, %U A383861 3,8,1,8,5,9,4,2,4,3,1,2,9,4,1,8,0,2,4,4,8,6,0,4,5,9,2,2,9,6,4,9,5,7,7,9,3,5,8,9,9,8,0,6,4,2 %N A383861 Central angle of the solution of the Tammes problem for 24 points on the sphere (in radians). %H A383861 Laslo Hars, <a href="https://www.hars.us/Papers/Numerical_Tammes.pdf">Numerical solutions of the Tammes problem for up to 60 points</a>, Nov 2020, N=24. %H A383861 R. M. Robinson, <a href="https://doi.org/10.1007/BF01396539">Arrangements of 24 points on the sphere</a>, Math. Ann. 144 (1961) 17-48. %H A383861 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tammes_problem">Tammes problem</a> %F A383861 cos( this ) = (t-1)/(3-t) where t=A058265. %e A383861 0.762547738750982556743106092114... %p A383861 t := (1+(19+3*sqrt(33))^(1/3)+(19-3*sqrt(33))^(1/3))/3 ; arccos((t-1)/(3-t)) ; evalf(%,120); %Y A383861 Cf. A058265, A019669 (N=6), A383859 (N=7), A381756 (N=8), A137914 (N=9), A340918 (N=10), A105199 (N=11 and N=12). A217695 (N=13), A383860 (N=14). %K A383861 nonn,cons %O A383861 0,1 %A A383861 _R. J. Mathar_, May 12 2025