A383864 The sum of divisors d of n having the property that for every prime p dividing n the p-adic valuation of d is either 0 or a unitary divisor of the p-adic valuation of n.
1, 3, 4, 7, 6, 12, 8, 11, 13, 18, 12, 28, 14, 24, 24, 19, 18, 39, 20, 42, 32, 36, 24, 44, 31, 42, 31, 56, 30, 72, 32, 35, 48, 54, 48, 91, 38, 60, 56, 66, 42, 96, 44, 84, 78, 72, 48, 76, 57, 93, 72, 98, 54, 93, 72, 88, 80, 90, 60, 168, 62, 96, 104, 79, 84, 144
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := 1 + DivisorSum[e, p^# &, CoprimeQ[#, e/#] &]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + sumdiv(f[i, 2], d, if(gcd(d, f[i, 2]/d) == 1, f[i, 1]^d)));}
Formula
Multiplicative with a(p^e) = 1 + Sum_{d|e, gcd(d, e/d) = 1} p^d.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} f(1/p) = 1.52168352620962354041..., and f(x) = (1-x) * (1 + Sum_{k>=1} (1 + Sum{d|k, gcd(d, k/d)=1} x^(2*k-d))).
Comments