A383867 The sum of divisors d of n having the property that for every prime p dividing n the p-adic valuation of d is either 0 or a squarefree divisor of the p-adic valuation of n.
1, 3, 4, 7, 6, 12, 8, 11, 13, 18, 12, 28, 14, 24, 24, 7, 18, 39, 20, 42, 32, 36, 24, 44, 31, 42, 31, 56, 30, 72, 32, 35, 48, 54, 48, 91, 38, 60, 56, 66, 42, 96, 44, 84, 78, 72, 48, 28, 57, 93, 72, 98, 54, 93, 72, 88, 80, 90, 60, 168, 62, 96, 104, 79, 84, 144, 68
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := 1 + DivisorSum[e, p^# &, SquareFreeQ[#] &]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + sumdiv(f[i, 2], d, if(issquarefree(d), f[i, 1]^d)));}
Formula
Multiplicative with a(p^e) = 1 + Sum_{d squarefree divisor of e} p^d.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} f(1/p) = 1.47709589136345836345..., and f(x) = (1-x) * (1 + Sum_{k>=1} (1 + Sum{d|k, d squarefree} x^(2*k-d))).
Comments