cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383893 Expansion of 1/( ((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x))^2 * (1-6*x) ).

This page as a plain text file.
%I A383893 #17 May 28 2025 18:39:45
%S A383893 1,36,721,10626,128758,1360128,12978758,114537348,950326391,
%T A383893 7502910996,56878787231,416937779286,2971567050420,20682844799760,
%U A383893 141092113563660,946112664225960,6251628891468765,40789040893547940,263235445374827965,1682802305881045290,10669738322822387746
%N A383893 Expansion of 1/( ((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x))^2 * (1-6*x) ).
%H A383893 Vincenzo Librandi, <a href="/A383893/b383893.txt">Table of n, a(n) for n = 0..500</a>
%H A383893 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (36,-575,5370,-32523,133848,-381065,748530,-991276,840216,-408960,86400).
%F A383893 a(n) = 36*a(n-1) - 575*a(n-2) + 5370*a(n-3) - 32523*a(n-4) + 133848*a(n-5) - 381065*a(n-6) + 748530*a(n-7) - 991276*a(n-8) + 840216*a(n-9) - 408960*a(n-10) + 86400*a(n-11).
%F A383893 a(n) = Sum_{k=0..n} Stirling2(k+5,5) * Stirling2(n-k+6,6).
%t A383893 a[n_]:=Sum [StirlingS2[k+5,5]*StirlingS2[n-k+6,6],{k,0,n}];Table[a[n],{n,0,19}] (* _Vincenzo Librandi_, May 23 2025 *)
%o A383893 (PARI) a(n) = sum(k=0, n, stirling(k+5, 5, 2)*stirling(n-k+6, 6, 2));
%o A383893 (Magma) [1] cat [&+[StirlingSecond(k+5,5) * StirlingSecond(n-k+6,6): k in [0..n]]: n in [1..25]]; // _Vincenzo Librandi_, May 23 2025
%Y A383893 Column k=6 of A287532.
%K A383893 nonn,easy
%O A383893 0,2
%A A383893 _Seiichi Manyama_, May 14 2025