This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383895 #20 Jun 30 2025 16:00:08 %S A383895 1,1,2,4,9,20,47,111,267,646,1582,3892,9636,23961,59871,150128,377738, %T A383895 953029,2410626,6111055,15524013,39508683,100719223,257150952, %U A383895 657454544,1683042629,4313582090,11067748352,28426813910,73082880708,188059428289,484330230117,1248338233493 %N A383895 Number of spiny partitions with exactly n parts. %C A383895 An integer partition is said to be spiny if for all parts k having multiplicity m the number of parts <= k is >= m*k. %C A383895 Arborescent partitions (cf. A383894) are spiny partitions. %H A383895 Alois P. Heinz, <a href="/A383895/b383895.txt">Table of n, a(n) for n = 0..200</a> %e A383895 The 20 spiny partitions corresponding to a(5) = 20 are: %e A383895 (11111), (21111), (22111), (31111), (32111), %e A383895 (32211), (41111), (42111), (42211), (43111), %e A383895 (43211), (51111), (52111), (52211), (53111), %e A383895 (53211), (54111), (54211), (54311), (54321). %e A383895 The partition (42221) is not spiny because the part 2 has multiplicity 3 but the number of parts <=2 is 4 < 3*2. %e A383895 The only spiny partition of length 5 which does not correspond to an arborescent partition is (42211), i.e. there is no tree whose multiset of subtree sizes is {6, 4, 2, 2, 1, 1} (cf. A383894). %o A383895 (Python) %o A383895 def A383895(n): #generator of terms a(0) to a(n) %o A383895 L = [[1]] %o A383895 for k in range(1,n+2): %o A383895 l = [0] %o A383895 for i in range(1,k+1): %o A383895 l.append(sum(L[a][b] for a in range(k-(k//i),k) for b in range(i))) %o A383895 L.append(l) %o A383895 yield l[-1] %Y A383895 Cf. A382440, A383894. %K A383895 nonn %O A383895 0,3 %A A383895 _Ludovic Schwob_, May 14 2025