This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383901 #30 Aug 14 2025 20:16:26 %S A383901 1,9,2,7,9,1,1,8,9,7,0,4,3,9,5,1,4,5,0,4,2,1,5,0,1,2,5,4,1,8,5,5,6,3, %T A383901 7,6,7,9,2,3,6,5,0,8,8,9,4,4,3,0,3,6,1,3,3,2,7,4,5,3,1,5,8,9,8,0,9,2, %U A383901 1,0,4,3,2,3,5,2,5,0,0,7,0,5,1,5,2,5,4,4,6,4,7,4,1,5,2,3,0,6,9,5,6,4,8,1,0,5,0,4,5,9 %N A383901 Decimal expansion of Meissel Prime theta function at 1 : Sum_{p prime} 1/exp(p). %C A383901 Meissel Prime theta function is defined : Sum_{p prime} 1/exp(x*p). %D A383901 Ernst Meissel, Bericht über die Provinzial-Gewerbe-Schule zu Iserlohn. Notiz No. 38 pp. 1-17 (manuscript). %H A383901 Peter Lindqvist and Jaak Peetre, <a href="/A077761/a077761.pdf">On a number theoretic sum considered by Meissel : a historical observation</a>, Nieuw Archief voor Wiskunde (Serie 4) 1997 Vol. 15 (3) pp. 175-179 (see reprint p. 3). %e A383901 0.192791189704395145042150125418556376792365... %p A383901 evalf[140](sum(1/exp(ithprime(i)), i=1..infinity)); # _Alois P. Heinz_, Aug 07 2025 %t A383901 sum = 0; Do[sum = sum + N[1/E^(Prime[n]), 110], {n, 1, 56}]; %t A383901 RealDigits[sum, 10, 105][[1]] %o A383901 (PARI) sumpos(k = 1, exp(-prime(k))) \\ _Amiram Eldar_, Aug 08 2025 %Y A383901 Cf. A077761, A383903. %K A383901 nonn,cons %O A383901 0,2 %A A383901 _Artur Jasinski_, Aug 07 2025