This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383904 #23 Aug 27 2025 18:20:19 %S A383904 0,0,0,1,3,11,35,118,392,1336,4587,15986,56231,199854,716014,2584742, %T A383904 9390656,34315811,126039218,465062362,1723066193,6407806833, %U A383904 23910159818,89493721076,335912335304,1264105728831,4768446686910,18027215660947,68291877609003 %N A383904 a(n) is the number of complement pairs of primitive 2n-bead balanced binary necklaces. %C A383904 A022553(n) is the number of primitive 2n-bead balanced binary necklaces (corresponding to Lyndon words), and A000048 is the number of those that are self-complementary (i.e., can be rotated so that all beads change color). Their difference 2*a(n) is the number of those that are not self-complementary. a(n) is the number pairs of distinct complements. %C A383904 Doubled entries: 0, 0, 0, 2, 6, 22, 70, 236, 784, 2672, 9174, 31972, 112462, 399708, 1432028, ... %C A383904 Sequences counting 2n-bead balanced binary necklaces: %C A383904 primitive imprimitive %C A383904 +-----------------------+---------+ %C A383904 self-complementary | A000048 A115118 | A000013 | %C A383904 complement pairs | this A387130 | A386388 | %C A383904 +-----------------------+---------+ %C A383904 | A022553 A386946 | A003239 | %C A383904 +-----------------------+---------+ %H A383904 Tilman Piesk, <a href="/A383904/b383904.txt">Table of n, a(n) for n = 0..1000</a> %F A383904 a(n) = (A022553(n) - A000048(n)) / 2. %e A383904 n | A022553(n) A000048(n) | 2*a(n) a(n) %e A383904 0 | 1 1 | 0 0 %e A383904 1 | 1 1 | 0 0 %e A383904 2 | 1 1 | 0 0 %e A383904 3 | 3 1 | 2 1 %e A383904 4 | 8 2 | 6 3 %e A383904 5 | 25 3 | 22 11 %e A383904 6 | 75 5 | 70 35 %e A383904 7 | 245 9 | 236 118 %e A383904 8 | 800 16 | 784 392 %e A383904 9 | 2700 28 | 2672 1336 %e A383904 10 | 9225 51 | 9174 4587 %e A383904 Examples for n=5 with necklaces of length 10: %e A383904 The total number of necklaces is A003239(5) = 26. %e A383904 Only A386946(5) = 1 of them is periodic, namely 0101010101. %e A383904 The other A022553(5) = 25 are primitive. %e A383904 A000048(5) = 3 among those are self-complementary: %e A383904 0000011111 %e A383904 0001011101 %e A383904 0010011011 %e A383904 The remaining 22 necklaces form a(5) = 11 complement pairs: %e A383904 0000101111 0000111101 %e A383904 0000110111 0001111001 %e A383904 0000111011 0001001111 %e A383904 0001010111 0001110101 %e A383904 0001011011 0010011101 %e A383904 0001100111 0001110011 %e A383904 0001101011 0010100111 %e A383904 0001101101 0010010111 %e A383904 0010101011 0011010101 %e A383904 0010101101 0010110101 %e A383904 0010110011 0011001101 %K A383904 nonn,new %O A383904 0,5 %A A383904 _Tilman Piesk_, Aug 07 2025