A383917 a(n) = Sum_{k=0..n} binomial(2*n, k) * (n-k)^(5*n).
1, 1, 1028, 14545530, 1127435263168, 309320354959336350, 232325928732003715014144, 403150958104730561230009068564, 1432706082674749593552098155989352448, 9528431104471630510834164178027409070527670, 110580781643902847320855308323644986008860441968640
Offset: 0
Keywords
Programs
-
Mathematica
Join[{1}, Table[Sum[Binomial[2*n, n-k]*k^(5*n), {k, 0, n}], {n, 1, 12}]]
Formula
a(n) ~ 2^(2*n + 1/2) * r^(5*n + 1) * n^(5*n) / (sqrt(5 - 3*r^2) * exp(5*n) * (1 - r^2)^n), where r = 0.98743428968604456152277643726278132237092161504496484119319... is the root of the equation (1 + r)/(1 - r) = exp(5/r).
Comments