cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383929 a(n) = Sum_{k=0..n} (-1)^k * binomial(2*n, k) * (n-k)^(3*n).

This page as a plain text file.
%I A383929 #6 May 16 2025 07:29:58
%S A383929 1,1,60,16626,12640320,20421928750,60233972198400,293230314199497444,
%T A383929 2192804991244707840000,23869875368184417393486678,
%U A383929 362747302615636095725568000000,7442995512384107947406685870219196,200637069747857913587015560318156800000,6945549555749361962465324588957867814958924
%N A383929 a(n) = Sum_{k=0..n} (-1)^k * binomial(2*n, k) * (n-k)^(3*n).
%F A383929 a(n) ~ 2^(2*n + 1/2) * r^(3*n + 1) * n^(3*n) / (sqrt(3 - r^2) * exp(3*n) * (r^2 - 1)^n), where r = 1.1647414545521878292908344008181647954486720209245020743652... is the root of the equation (1 + r)/(1 - r) = -exp(3/r).
%t A383929 Join[{1}, Table[Sum[(-1)^(n-k)*Binomial[2*n, n-k]*k^(3*n), {k, 0, n}], {n, 1, 15}]]
%Y A383929 Cf. A002674, A298851, A383916, A383930.
%K A383929 nonn
%O A383929 0,3
%A A383929 _Vaclav Kotesovec_, May 15 2025