A384234 Irregular triangle read by rows: T(n,k) is the index of the k-th odd noncomposite divisor in the list of divisors of n, with n >=1, k >= 1.
1, 1, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 3, 1, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 4, 1, 2, 1, 1, 2, 3, 1, 3, 1, 2, 3, 1, 3, 1, 2, 1, 3, 1, 2, 3, 1, 4, 1, 2, 1, 3, 5, 1, 2, 1, 4, 1, 2, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3
Offset: 1
Examples
Triangle begins (n = 1..21): 1; 1; 1, 2; 1; 1, 2; 1, 3; 1, 2; 1; 1, 2; 1, 3; 1, 2; 1, 3; 1, 2; 1, 3; 1, 2, 3; 1; 1, 2; 1, 3; 1, 2; 1, 4; 1, 2, 3; ... For n = 30 the divisors of 30 are [1, 2, 3, 5, 6, 10, 15, 30] and the odd noncomposite divisors are [1, 3, 5] and the indices of them in the list of divisors are [1, 3, 4] respectively, so the 30th row of the triangle is [1, 3, 4].
Crossrefs
Programs
-
Mathematica
row[n_] := Module[{m = n/2^IntegerExponent[n, 2]}, Join[{1}, If[m == 1, {}, Position[Divisors[n], #] & /@ FactorInteger[m][[;; , 1]] // Flatten]]]; Array[row, 50] // Flatten (* Amiram Eldar, May 29 2025 *)
Comments