This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383965 #53 Aug 16 2025 10:02:23 %S A383965 1,4,52,804,13412,233548,4180932,76307228,1412731844,26443784224, %T A383965 499310856828,9494966722696,181620437132820,3491268491768400, %U A383965 67396227598309788,1305787014634864584,25380012805871145604,494684878753394992992,9665968233663380580256,189289570996914582016788 %N A383965 Self-convolution square-root of A004381, where A004381(n) = binomial(8*n,n). %C A383965 In general, for m > 1, if Sum_{k=0..n} a(k)*a(n-k) = binomial(m*n,n), then a(n) ~ m^(m*n + 1/4) / (2^(1/4) * Gamma(1/4) * (m-1)^((m-1)*n + 1/4) * n^(3/4)). %F A383965 a(n) ~ 2^(24*n + 1/2) / (Gamma(1/4) * 7^(7*n + 1/4) * n^(3/4)). %F A383965 From _Seiichi Manyama_, Aug 16 2025: (Start) %F A383965 Sum_{k=0..n} a(k) * a(n-k) = A004381(n). %F A383965 G.f.: 1/sqrt(1 - 8*x*g^7) where g = 1+x*g^8 is the g.f. of A007556. %F A383965 G.f.: sqrt( g/(8-7*g) ) where g = 1+x*g^8 is the g.f. of A007556. (End) %p A383965 a:= proc(n) option remember; `if`(n=0, 1, %p A383965 (binomial(8*n, n)-add(a(j)*a(n-j), j=1..n-1))/2) %p A383965 end: %p A383965 seq(a(n), n=0..20); # _Alois P. Heinz_, Jun 06 2025 %t A383965 nmax = 20; self = ConstantArray[0, nmax + 1]; self[[1]] = 1; self[[2]] = 4; Do[self[[k+1]] = (Binomial[8*k, k] - Sum[self[[j+1]]*self[[k - j + 1]], {j, 1, k-1}]) / (2*self[[1]]);, {k, 2, nmax}]; self %Y A383965 Cf. A004381, A007556, A208977, A384695. %K A383965 nonn %O A383965 0,2 %A A383965 _Vaclav Kotesovec_, Jun 06 2025