This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383968 #23 May 29 2025 00:12:01 %S A383968 1,1,2,3,5,9,17,30,58,107,205,392,768,1466,2883,5597,11038,21572, %T A383968 42675,83711,166371,327893,651199,1288480,2564032,5082878,10127472, %U A383968 20115845,40104636,79781149,159174500,316962113,632716744,1261189166,2518287361,5023170116,10034132101,20025033970 %N A383968 Number of distinct subsets S of [1..n] such that for all 1 <= k <= n, there exists two elements x,y in S (not necessarily distinct) such that x+y = 2k. %C A383968 Every subset S of [1..n] must have 1 and n to get 2 and 2*n. For odd n we therefore have 1+n which we need as well. If S is no such subset then no subset S' of S must be tested. - _David A. Corneth_, May 22 2025 %H A383968 David A. Corneth, <a href="/A383968/a383968.gp.txt">PARI program</a> %H A383968 Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a383/A383968.java">Java program</a> (github) %e A383968 For n = 5, there are 5 sets S that satisfy the said conditions: {1, 2, 3, 4, 5}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5} and {1, 3, 5}. %o A383968 (Python) %o A383968 def a(n): %o A383968 if n == 1: return 1 %o A383968 c,t = 0, set(k << 1 for k in range(1, n+1)) %o A383968 for i in range(1 << (n-2), 1 << n): %o A383968 s = [j+1 for j in range(n) if (i >> j) & 1] %o A383968 if s[0] == 1 and s[-1] == n: %o A383968 ss = set(x + y for x in s for y in s if x & 1 == y & 1) %o A383968 if t.issubset(ss): c += 1 %o A383968 return c # _DarĂo Clavijo_, May 23 2025 %K A383968 nonn %O A383968 1,3 %A A383968 _SiYang Hu_, May 16 2025 %E A383968 a(23)-a(38) from _Sean A. Irvine_, May 21 2025