This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383985 #17 May 24 2025 00:21:11 %S A383985 0,1,-1,4,-23,181,-1812,22037,-315569,5201602,-97009833,2019669961, %T A383985 -46432870222,1168383075471,-31939474693297,942565598033196, %U A383985 -29866348653695203,1011335905644178273,-36446897413531401020,1392821757824071815641,-56259101478392975833333 %N A383985 Series expansion of the exponential generating function LambertW(1-exp(x)), see A000169. %H A383985 Michael De Vlieger, <a href="/A383985/b383985.txt">Table of n, a(n) for n = 0..200</a> %H A383985 Bérénice Delcroix-Oger and Clément Dupont, <a href="https://arxiv.org/abs/2505.06094">Lie-operads and operadic modules from poset cohomology</a>, arXiv:2505.06094 [math.CO], 2025. See p. 28, Table 2, permutative commutative operad "Perm/Com2". %t A383985 nn = 20; f[x_] := -Sum[k^(k - 1)*(1 - Exp[x])^k/k!, {k, nn}]; %t A383985 Range[0, nn]! * CoefficientList[Series[f[x], {x, 0, nn}], x] %Y A383985 Cf. A002050, A006531, A084099, A101851, A114285, A177885, A225883, A383986, A383987, A383988, A383989. %Y A383985 Composition of A000169 with signs and 1-exp(x). %K A383985 sign,easy %O A383985 0,4 %A A383985 _Michael De Vlieger_, May 16 2025