This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A383992 #9 May 21 2025 01:25:57 %S A383992 0,1,-4,3,40,-330,1626,-3150,-54592,1060920,-13022280,127171440, %T A383992 -889086648,-283184616,179750627616,-4895777544840,99124001788800, %U A383992 -1721513264431680,25736021675994816,-292896125040673728,639149345262276480,106178474282318726400 %N A383992 Series expansion of the exponential generating function exp(arbustive(x)) - 1 where arbustive(x) = (log(1+x) - x^2) / (1+x). %H A383992 Michael De Vlieger, <a href="/A383992/b383992.txt">Table of n, a(n) for n = 0..448</a> %H A383992 Bérénice Delcroix-Oger and Clément Dupont, <a href="https://arxiv.org/abs/2505.06094">Lie-operads and operadic modules from poset cohomology</a>, arXiv:2505.06094 [math.CO], 2025. See p. 32, Table 3, operad "Arbustive". %t A383992 nn = 21; f[x_] := Exp[x] - 1; %t A383992 Range[0, nn]! * CoefficientList[Series[f[(Log[1 + x] - x^2)/(1 + x)], {x, 0, nn}], x] %Y A383992 Cf. A003725, A097388, A111884, A112242, A114285, A177885, A318215, A383990, A383991, A383993, A383994, A383995. %K A383992 sign,easy %O A383992 0,3 %A A383992 _Michael De Vlieger_, May 16 2025