This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384003 #23 Aug 30 2025 10:11:36 %S A384003 1,2,3,12,5,40,45,360,7,112,189,3024,175,2800,4725,75600,11,352,891, %T A384003 28512,1375,44000,111375,3564000,539,17248,43659,1397088,67375, %U A384003 2156000,5457375,174636000,13,832,3159,202176,8125,520000,1974375,126360000,4459,285376,1083537 %N A384003 Irregular triangle T(n,k), n >= 0, 0 <= k < 2^(n-1), where T(n,k) = Product_{j=0..n-1} prime(j+1)^((n-j)*d_j), where d_j is the bit with digit weight 2^j in the binary expansion of 2^(n-1)+k. %C A384003 This sequence can be seen as a structured ordering of numbers m that are not divisible by the square of their greatest prime factor and where every prime in the canonical factorization of m has the same sum of prime index and exponent. For example, prime(1)^3 * prime(3)^1 = 2^3 * 5 = 40. The ordering is lexicographic according to prime divisors listed in decreasing order, as used for A019565. Row n has the numbers whose greatest prime factor is prime(n). %H A384003 Michael De Vlieger, <a href="/A384003/b384003.txt">Table of n, a(n) for n = 0..16384</a> (rows n = 0..14, flattened) %H A384003 Michael De Vlieger, <a href="/A384003/a384003.png">Log log scatterplot of a(n)</a>, n = 0..16384. %H A384003 Michael De Vlieger, <a href="/A384003/a384003_1.png">Plot prime(i)^j at (x,y) = (n,i)</a>, n = 0..2047, 16X vertical exaggeration, with a color function representing j = 1 in black, j = 2 in red, j = 3 in orange, ..., j = 14 in magenta. %F A384003 T(0,0) = 1; T(1,0) = 2. %F A384003 Otherwise, T(n,2k) = A003961(T(n-1,k)). %F A384003 T(n,2k+1) = T(n,2k)*2^n. %F A384003 T(n,0) = prime(n). %F A384003 T(n,2^(n-1)-1) = A006939(n). %F A384003 T(n,2^(n-2)) = A251720(n). %F A384003 Using a(m) to denote a term of the linear sequence with offset 0: (Start) %F A384003 A019565(m) = A007947(a(m)). %F A384003 a(m) = T(n,k) = gcd(A019565(m)^n, A006939(n)). %F A384003 Equivalently, for p = A000040(i), the i-th prime, p|a(m) iff p|A019565(m), in which case A060175(m,i) = j - i + 1, where j = PrimePi(gpf(A019565(m))) = A061395(A019565(m)). %F A384003 (End) %F A384003 For n > 0, A071178(T(n,k)) = 1. %e A384003 Table begins: %e A384003 n\k 0 1 2 3 4 5 6 7 %e A384003 ----------------------------------------------- %e A384003 0: 1; %e A384003 1: 2; %e A384003 2: 3, 12; %e A384003 3: 5, 40, 45, 360; %e A384003 4: 7, 112, 189, 3024, 175, 2800, 4725, 75600; %e A384003 ... %e A384003 Table showing prime power decomposition of a(n), where A067255(a(n)) represents prime(i)^j | a(n), with j in the i-th position, replacing 0 with "." for visibility: %e A384003 n a(n) A067255(a(n)) %e A384003 -------------------------- %e A384003 0 1 . %e A384003 1 2 1 %e A384003 2 3 .1 %e A384003 3 12 21 %e A384003 4 5 ..1 %e A384003 5 40 3.1 %e A384003 6 45 .21 %e A384003 7 360 321 %e A384003 8 7 ...1 %e A384003 9 112 4..1 %e A384003 10 189 .3.1 %e A384003 11 3024 43.1 %e A384003 12 175 ..21 %e A384003 13 2800 4.21 %e A384003 14 4725 .321 %e A384003 15 75600 4321 %t A384003 f[x_] := If[x == 1, {0}, Function[g, ReplacePart[Table[0, {PrimePi[f[[-1, 1]] ]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, g]]@ FactorInteger@ x]; Table[f[Reverse@ Range[Length[#]]*#] &@ Reverse@ IntegerDigits[n, 2], {n, 0, 120}] %Y A384003 Cf. A000040, A003961, A006939, A007947, A019565, A060175, A061395, A071178, A251720. %K A384003 nonn,tabf,easy,base,changed %O A384003 0,2 %A A384003 _Michael De Vlieger_ and _Peter Munn_, May 28 2025 %E A384003 Name edited by _Peter Munn_, Aug 30 2025