A384004 a(n) = smallest k such that A010846(k) = n.
1, 2, 4, 8, 6, 10, 22, 12, 44, 18, 24, 50, 98, 36, 48, 54, 224, 30, 42, 70, 108, 66, 78, 162, 102, 60, 138, 84, 174, 260, 132, 90, 126, 228, 354, 120, 234, 168, 350, 306, 150, 516, 408, 180, 252, 552, 696, 294, 240, 336, 612, 378, 270, 1416, 300, 702, 1332, 360
Offset: 1
Keywords
Examples
Table of n, a(n) for n=1..10, showing row a(n) of A162306, replacing lpf(a(n)) with p, and A119288(a(n)) with q. Note: A010846(n) is the length of row n of A162306. n a(n) row n of A162306 ---------------------------------------------------------- 1: 1 {1} 2: 2 {1, p} 3: 4 {1, p, p^2} 4: 8 {1, p, p^2, p^3} 5: 6 {1, p, q, p^2, p*q} 6: 10 {1, p, p^2, q, p^3, p*q} 7: 22 {1, p, p^2, p^3, q, p^4, p*q} 8: 12 {1, p, q, p^2, p*q, p^3, q^2, p^2*q} 9: 44 {1, p, p^2, p^3, q, p^4, p*q, p^5, p^2*q} 10: 18 {1, p, q, p^2, p*q, p^3, q^2, p^2*q, p^4, p*q^2}
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..4647
- Michael De Vlieger, Log log scatterplot of a(n), n = 1..4647, showing primes in large red, proper prime powers in large gold, composite primorials in large bright green, other squarefree composites in small green, and numbers neither squarefree nor prime powers in blue or magenta, with magenta signifying powerful numbers that are not prime powers.
Programs
-
Mathematica
(* First, load the theta program from the algorithms linked in A369609, then: *) nn = 2310; t[_] := 0; u = 1; Do[(If[t[#] == 0, t[#] = n]; If[# == u, While[t[u] != 0, u++]]) &[theta[n]], {n, nn}]; Array[t, u - 1]
Comments