A384005 Number of ways to choose disjoint strict integer partitions, one of each conjugate prime index of n.
1, 1, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Examples
The prime indices of 96 are {1,1,1,1,1,2}, conjugate (6,1), and we have choices (6,1) and (4,2,1), so a(96) = 2. The prime indices of 108 are {1,1,2,2,2}, conjugate (5,3), and we have choices (5,3), (5,2,1), (4,3,1), so a(108) = 3.
Crossrefs
Programs
-
Mathematica
pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&]; conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Length[pof[conj[prix[n]]]],{n,100}]