This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384006 #5 May 22 2025 17:06:09 %S A384006 216,1000,1296,2744,3375,7776,9261,10000,10648,17576,32400,35937, %T A384006 38416,38880,39304,42875,46656,50625,54000,54432,54872,59319,63504, %U A384006 81000,85536,90000,97336,100000 %N A384006 Heinz numbers of Look-and-Say partitions without distinct multiplicities (non Wilf). %C A384006 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A384006 An integer partition is Wilf iff its multiplicities are all different, ranked by A130091, complement A130092. %C A384006 An integer partition is Look-and-Say iff it is possible to choose a disjoint family of strict partitions, one of each of its multiplicities. These are ranked by A351294. %e A384006 The terms together with their prime indices begin: %e A384006 216: {1,1,1,2,2,2} %e A384006 1000: {1,1,1,3,3,3} %e A384006 1296: {1,1,1,1,2,2,2,2} %e A384006 2744: {1,1,1,4,4,4} %e A384006 3375: {2,2,2,3,3,3} %e A384006 7776: {1,1,1,1,1,2,2,2,2,2} %e A384006 9261: {2,2,2,4,4,4} %e A384006 10000: {1,1,1,1,3,3,3,3} %e A384006 10648: {1,1,1,5,5,5} %e A384006 17576: {1,1,1,6,6,6} %e A384006 32400: {1,1,1,1,2,2,2,2,3,3} %e A384006 35937: {2,2,2,5,5,5} %e A384006 38416: {1,1,1,1,4,4,4,4} %e A384006 38880: {1,1,1,1,1,2,2,2,2,2,3} %e A384006 39304: {1,1,1,7,7,7} %e A384006 42875: {3,3,3,4,4,4} %e A384006 46656: {1,1,1,1,1,1,2,2,2,2,2,2} %e A384006 50625: {2,2,2,2,3,3,3,3} %e A384006 54000: {1,1,1,1,2,2,2,3,3,3} %e A384006 54432: {1,1,1,1,1,2,2,2,2,2,4} %e A384006 54872: {1,1,1,8,8,8} %e A384006 59319: {2,2,2,6,6,6} %e A384006 63504: {1,1,1,1,2,2,2,2,4,4} %e A384006 81000: {1,1,1,2,2,2,2,3,3,3} %e A384006 85536: {1,1,1,1,1,2,2,2,2,2,5} %e A384006 90000: {1,1,1,1,2,2,3,3,3,3} %e A384006 97336: {1,1,1,9,9,9} %e A384006 100000: {1,1,1,1,1,3,3,3,3,3} %t A384006 disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&]; %t A384006 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A384006 Select[Range[1000],disjointFamilies[prix[#]]!={}&&!UnsameQ@@Last/@FactorInteger[#]&] %Y A384006 Ranking sequences are shown in parentheses below. %Y A384006 These partitions are counted by A351592. %Y A384006 For section-sum instead of Look-and-Say we have (A383514), counted by A383506. %Y A384006 A055396 gives least prime index, greatest A061395. %Y A384006 A056239 adds up prime indices, row sums of A112798, counted by A001222. %Y A384006 A098859 counts Wilf partitions (A130091), conjugate (A383512). %Y A384006 A122111 represents conjugation in terms of Heinz numbers. %Y A384006 A239455 counts section-sum partitions (A381432), complement A351293 (A381433). %Y A384006 A336866 counts non Wilf partitions (A130092), conjugate (A383513). %Y A384006 A383511 counts partitions that are Look-and-Say and section-sum but not Wilf (A383518). %Y A384006 Cf. A000720, A001223, A048767, A051903, A212166, A325368, A383520, A383531. %K A384006 nonn %O A384006 1,1 %A A384006 _Gus Wiseman_, May 19 2025