This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384007 #5 May 22 2025 17:06:03 %S A384007 10,14,15,22,26,33,34,35,38,39,46,51,55,57,58,62,65,69,74,77,82,85,86, %T A384007 87,91,93,94,95,100,106,111,115,118,119,122,123,129,130,133,134,141, %U A384007 142,143,145,146,155,158,159,161,166,170,177,178,182,183,185,187,190 %N A384007 Heinz numbers of non Look-and-Say section-sum partitions. %C A384007 First differs from A383514 in lacking 1000. %C A384007 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A384007 An integer partition is Look-and-Say iff it is possible to choose a disjoint family of strict partitions, one of each of its multiplicities. These are ranked by A351294. %C A384007 An integer partition is section-sum iff it is possible to choose a disjoint family of strict partitions, one of each of its positive 0-appended differences. These are ranked by A381432. %e A384007 The terms together with their prime indices begin: %e A384007 10: {1,3} 57: {2,8} 94: {1,15} %e A384007 14: {1,4} 58: {1,10} 95: {3,8} %e A384007 15: {2,3} 62: {1,11} 100: {1,1,3,3} %e A384007 22: {1,5} 65: {3,6} 106: {1,16} %e A384007 26: {1,6} 69: {2,9} 111: {2,12} %e A384007 33: {2,5} 74: {1,12} 115: {3,9} %e A384007 34: {1,7} 77: {4,5} 118: {1,17} %e A384007 35: {3,4} 82: {1,13} 119: {4,7} %e A384007 38: {1,8} 85: {3,7} 122: {1,18} %e A384007 39: {2,6} 86: {1,14} 123: {2,13} %e A384007 46: {1,9} 87: {2,10} 129: {2,14} %e A384007 51: {2,7} 91: {4,6} 130: {1,3,6} %e A384007 55: {3,5} 93: {2,11} 133: {4,8} %t A384007 disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&]; %t A384007 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A384007 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A384007 Select[Range[100],disjointFamilies[prix[#]]=={}&&disjointFamilies[conj[prix[#]]]!={}&] %Y A384007 Ranking sequences are shown in parentheses below. %Y A384007 These partitions are counted by A383509. %Y A384007 Negating both properties gives (A383516). %Y A384007 A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605. %Y A384007 A055396 gives least prime index, greatest A061395. %Y A384007 A056239 adds up prime indices, row sums of A112798, counted by A001222. %Y A384007 A098859 counts Wilf partitions (A130091), conjugate (A383512). %Y A384007 A122111 represents conjugation in terms of Heinz numbers. %Y A384007 A239455 counts Look-and-Say partitions (A351294), complement A351293 (A351295). %Y A384007 A239455 counts section-sum partitions (A381432), complement A351293 (A381433). %Y A384007 A383508 counts partitions that are both Look-and-Say and section-sum (A383515). %Y A384007 A383510 counts partitions that are neither Look-and-Say nor section-sum (A383517). %Y A384007 A383511 counts partitions that are Look-and-Say and section-sum but not Wilf (A383518). %Y A384007 Cf. A000720, A001223, A212166, A238745, A325368, A383514, A383520, A383531, A384006. %K A384007 nonn %O A384007 1,1 %A A384007 _Gus Wiseman_, May 19 2025