A384008 Irregular triangle read by rows where row n lists the first differences of the 0-prepended prime indices of the n-th squarefree number.
1, 2, 3, 1, 1, 4, 1, 2, 5, 6, 1, 3, 2, 1, 7, 8, 2, 2, 1, 4, 9, 1, 5, 10, 1, 1, 1, 11, 2, 3, 1, 6, 3, 1, 12, 1, 7, 2, 4, 13, 1, 1, 2, 14, 1, 8, 15, 2, 5, 16, 3, 2, 2, 6, 1, 9, 17, 18, 1, 10, 3, 3, 1, 1, 3, 19, 2, 7, 1, 2, 1, 20, 21, 1, 11, 4, 1, 1, 1, 4, 22, 1, 12, 23, 3, 4
Offset: 1
Examples
The 28-th squarefree number is 42, with 0-prepended prime indices (0,1,2,4), with differences (1,1,2), so row 28 is (1,1,2). The squarefree numbers and corresponding rows begin: 1: () 23: (9) 47: (15) 2: (1) 26: (1,5) 51: (2,5) 3: (2) 29: (10) 53: (16) 5: (3) 30: (1,1,1) 55: (3,2) 6: (1,1) 31: (11) 57: (2,6) 7: (4) 33: (2,3) 58: (1,9) 10: (1,2) 34: (1,6) 59: (17) 11: (5) 35: (3,1) 61: (18) 13: (6) 37: (12) 62: (1,10) 14: (1,3) 38: (1,7) 65: (3,3) 15: (2,1) 39: (2,4) 66: (1,1,3) 17: (7) 41: (13) 67: (19) 19: (8) 42: (1,1,2) 69: (2,7) 21: (2,2) 43: (14) 70: (1,2,1) 22: (1,4) 46: (1,8) 71: (20)
Crossrefs
Programs
-
Mathematica
sql=Select[Range[100],SquareFreeQ]; prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Differences[Prepend[prix[sql[[n]]],0]],{n,Length[sql]}]
Comments