This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384010 #10 May 24 2025 11:00:35 %S A384010 1,2,4,6,8,12,16,18,24,27,30,32,36,48,54,60,64,72,81,90,96,108,120, %T A384010 128,144,150,162,180,192 %N A384010 Heinz numbers of integer partitions such that it is possible to choose a family of disjoint strict partitions, one of each conjugate part. %C A384010 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %e A384010 The prime indices of 96 are {1,1,1,1,1,2}, conjugate (6,1), disjoint family (4,2,1), so 96 is in the sequence. %e A384010 The terms together with their prime indices begin: %e A384010 1: {} %e A384010 2: {1} %e A384010 4: {1,1} %e A384010 6: {1,2} %e A384010 8: {1,1,1} %e A384010 12: {1,1,2} %e A384010 16: {1,1,1,1} %e A384010 18: {1,2,2} %e A384010 24: {1,1,1,2} %e A384010 27: {2,2,2} %e A384010 30: {1,2,3} %e A384010 32: {1,1,1,1,1} %e A384010 36: {1,1,2,2} %e A384010 48: {1,1,1,1,2} %e A384010 54: {1,2,2,2} %e A384010 60: {1,1,2,3} %e A384010 64: {1,1,1,1,1,1} %t A384010 pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&]; %t A384010 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A384010 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A384010 Select[Range[100],pof[conj[prix[#]]]!={}&] %Y A384010 For multiplicities instead of indices we have A382525. %Y A384010 These partitions are counted by A383708, without ones A383533, complement A383711. %Y A384010 These are the positions of positive terms in A384005. %Y A384010 The complement is A384011, conjugate A383710. %Y A384010 A000041 counts integer partitions, strict A000009. %Y A384010 A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605. %Y A384010 A055396 gives least prime index, greatest A061395. %Y A384010 A056239 adds up prime indices, row sums of A112798. %Y A384010 A122111 represent conjugation in terms of Heinz numbers. %Y A384010 A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432. %Y A384010 A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433. %Y A384010 Cf. A098859, A130091, A279375, A279790, A299200, A357982, A382912, A383706, A383707. %K A384010 nonn,more %O A384010 1,2 %A A384010 _Gus Wiseman_, May 23 2025