This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384011 #12 Jun 08 2025 14:20:12 %S A384011 3,5,7,9,10,11,13,14,15,17,19,20,21,22,23,25,26,28,29,31,33,34,35,37, %T A384011 38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,55,56,57,58,59,61,62,63, %U A384011 65,66,67,68,69,70,71,73,74,75,76,77,78,79,80,82,83,84,85 %N A384011 Numbers k such that it is not possible to choose disjoint strict integer partitions of each conjugate prime index of k. %C A384011 A prime index of k is a number m such that prime(m) divides k. The multiset of prime indices of k is row k of A112798. %e A384011 The terms together with their prime indices begin: %e A384011 3: {2} %e A384011 5: {3} %e A384011 7: {4} %e A384011 9: {2,2} %e A384011 10: {1,3} %e A384011 11: {5} %e A384011 13: {6} %e A384011 14: {1,4} %e A384011 15: {2,3} %e A384011 17: {7} %e A384011 19: {8} %e A384011 20: {1,1,3} %e A384011 21: {2,4} %e A384011 22: {1,5} %e A384011 23: {9} %e A384011 25: {3,3} %e A384011 26: {1,6} %e A384011 28: {1,1,4} %t A384011 pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&]; %t A384011 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A384011 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A384011 Select[Range[100],pof[conj[prix[#]]]=={}&] %Y A384011 The conjugate is A382912. %Y A384011 These complement is counted by A383708, ranks A382913 or A384010. %Y A384011 These partitions are counted by A383710, conjugate A383711. %Y A384011 These are the positions of 0 in A384005, conjugate A383706. %Y A384011 A000041 counts integer partitions, strict A000009. %Y A384011 A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605. %Y A384011 A055396 gives least prime index, greatest A061395. %Y A384011 A056239 adds up prime indices, row sums of A112798. %Y A384011 A122111 represent conjugation in terms of Heinz numbers. %Y A384011 A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432. %Y A384011 A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433. %Y A384011 Cf. A098859, A130091, A279375, A279790, A357982, A382525, A383533, A383707. %K A384011 nonn %O A384011 1,1 %A A384011 _Gus Wiseman_, May 23 2025