cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384030 a(n) = [x^(2*n)] Product_{k=0..n-1} (1 + k*x)^4.

This page as a plain text file.
%I A384030 #9 May 17 2025 14:01:08
%S A384030 1,0,1,248,79441,38878520,27741179521,27412462941136,
%T A384030 35965398129639713,60588665662486807184,127588718827126433989569,
%U A384030 328596587850349392471155720,1016488989627693108972046560497,3720090951049096346043302894560648,15901046580509525131539058273675597889
%N A384030 a(n) = [x^(2*n)] Product_{k=0..n-1} (1 + k*x)^4.
%F A384030 a(n) = Sum_{0<=i, j, k, l<=n and i+j+k+l=2*n} |Stirling1(n,i) * Stirling1(n,j) * Stirling1(n,k) * Stirling1(n,l)|.
%o A384030 (PARI) a(n) = sum(i=0, n, sum(j=0, 2*n-i, sum(k=0, 2*n-i-j, abs(stirling(n, i, 1)*stirling(n, j, 1)*stirling(n, k, 1)*stirling(n, 2*n-i-j-k, 1)))));
%Y A384030 Cf. A384027, A384029.
%K A384030 nonn
%O A384030 0,4
%A A384030 _Seiichi Manyama_, May 17 2025