A384040 The number of integers k from 1 to n such that gcd(n,k) is a cubefull number.
1, 1, 2, 2, 4, 2, 6, 5, 6, 4, 10, 4, 12, 6, 8, 10, 16, 6, 18, 8, 12, 10, 22, 10, 20, 12, 19, 12, 28, 8, 30, 20, 20, 16, 24, 12, 36, 18, 24, 20, 40, 12, 42, 20, 24, 22, 46, 20, 42, 20, 32, 24, 52, 19, 40, 30, 36, 28, 58, 16, 60, 30, 36, 40, 48, 20, 66, 32, 44, 24
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
The number of integers k from 1 to n such that gcd(n,k) is: A026741 (odd), A062570 (power of 2), A063659 (squarefree), A078429 (cube), A116512 (power of a prime), A117494 (prime), A126246 (1 or 2), A206369 (square), A254926 (cubefree), A372671 (3-smooth), A384039 (powerful), this sequence (cubefull), A384041 (exponentially odd), A384042 (5-rough).
Programs
-
Mathematica
f[p_, e_] := Switch[e, 1, p-1, 2, p^2-p, , (p^3-p^2+1)*p^(e-3)]; a[1] = 1; a[n] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, f[i,1]-1, if(f[i,2] == 2, f[i,1]*(f[i,1]-1), (f[i,1]^3-f[i,1]^2+1)*f[i,1]^(f[i,2]-3))));}
Formula
Multiplicative with a(p^e) = (p^3-p^2+1)*p^(e-3) if e >= 3, p*(p-1) if e = 2, and p-1 otherwise.
Dirichlet g.f.: zeta(s-1) * Product_{p prime} (1 - 1/p^s + 1/p^(3*s)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 - 1/p^2 + 1/p^6) = 0.62159731307414305346... .
Comments