cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384047 Triangle read by rows: T(n, k) for 1 <= k <= n is the largest divisor of k that is a unitary divisor of n.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 1, 5, 1, 2, 3, 2, 1, 6, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 3, 4, 1, 3, 1, 4, 3, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13
Offset: 1

Views

Author

Amiram Eldar, May 18 2025

Keywords

Examples

			Triangle begins:
  1
  1, 2
  1, 1, 3
  1, 1, 1, 4
  1, 1, 1, 1, 5
  1, 2, 3, 2, 1, 6
  1, 1, 1, 1, 1, 1, 7
  1, 1, 1, 1, 1, 1, 1, 8
  1, 1, 1, 1, 1, 1, 1, 1, 9
  1, 2, 1, 2, 5, 2, 1, 2, 1, 10
		

Crossrefs

Upper right triangle of A322482.

Programs

  • Mathematica
    udiv[n_] := Select[Divisors[n], CoprimeQ[#, n/#] &]; T[n_, k_] := Max[Intersection[udiv[n], Divisors[k]]]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten
  • PARI
    udiv(n) = select(x -> gcd(x, n/x) == 1, divisors(n));
    T(n, k) = vecmax(setintersect(udiv(n), divisors(k)));

Formula

T(n, 1) = 1.
T(n, n) = n.
T(n, k) <= A050873(n, k) = gcd(n, k), with equality if n is squarefree (A005117).