A384057 The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a 3-smooth number.
1, 2, 3, 4, 4, 6, 6, 8, 9, 8, 10, 12, 12, 12, 12, 16, 16, 18, 18, 16, 18, 20, 22, 24, 24, 24, 27, 24, 28, 24, 30, 32, 30, 32, 24, 36, 36, 36, 36, 32, 40, 36, 42, 40, 36, 44, 46, 48, 48, 48, 48, 48, 52, 54, 40, 48, 54, 56, 58, 48, 60, 60, 54, 64, 48, 60, 66, 64
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Unitary analog of A372671.
The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is: A047994 (1), A384048 (squarefree), A384049 (cubefree), A384050 (powerful), A384051 (cubefull), A384052 (square), A384053 (cube), A384054 (exponentially odd), A384055 (odd), A384056 (power of 2), this sequence (3-smooth), A384058 (5-rough).
Programs
-
Mathematica
f[p_, e_] := p^e - If[p < 5, 0, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a,100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] - if(f[i,1] < 5, 0, 1));}
Formula
Multiplicative with a(p^e) = p^e if p <= 3, and p^e-1 if p >= 5.
Dirichlet g.f.: zeta(s-1) * zeta(s) * ((1-1/2^s)/(1-1/2^(s-1)+1/2^(2*s-1))) * ((1-1/3^s)/(1-2/3^s+1/3^(2*s-1))) * Product_{p prime} (1 - 2/p^s + 1/p^(2*s-1)).
Sum_{k=1..n} a(k) ~ (36/55) * c * n^2, where c = Product_{p prime} (1 - 1/(p*(p+1))) = A065463.
In general, the average order of the number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a p-smooth number (i.e., not divisible by any prime larger than the prime p) is (1/2) * Product_{q prime <= p} (1 + 1/(q^2+q-1)) * A065463 * n^2.
Comments