A384075 a(n) = neg(M(n)), where M(n) is the n X n circulant matrix with (row 1) = (1,3,5,7, ..., 2n - 1), and neg(M(n)) is the negative part of the determinant of M(n); see A380661.
0, -9, -45, -4716, -200200, -20916552, -2462535768, -406262340288, -84096850828032, -21708790967664000, -6808563893605222144, -2552145158372103507456, -1126589571631974396251136, -578462264691449080954733568, -341831891354409385226121600000
Offset: 1
Keywords
Examples
The rows of M(4) are (1,3,5,7), (7,1,3,5), (5,7,1,3), (3,5,7,1); determinant(M(4)) = -4716; permanent(M(4)) = 2668, so neg(M(4)) = (-2048 - 7384)/2 = -4716 and pos(M(4)) = (-2048 + 7384)/2 = 2668.
Programs
-
Mathematica
z = 19; v[n_] := Table[2 k + 1, {k, 0, n - 1}]; u[n_] := Table[RotateRight[#, k - 1], {k, 1, Length[#]}] &[v[n]]; p = Table[Simplify[Permanent[u[n]]], {n, 1, z}] (* A384074 *) d = Table[Simplify[Det[u[n]]], {n, 1, z}] (* A193678, with alternating signs *) neg = (d - p)/2 (* A384075 *) pos = (d + p)/2 (* A384076 *)