cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384088 a(n) = [x^n] Product_{k=1..n} ((1 + k*x)/(1 - k*x))^4.

This page as a plain text file.
%I A384088 #12 May 19 2025 10:03:46
%S A384088 1,8,288,18528,1728000,211687080,32159822688,5835397918336,
%T A384088 1231573968949248,296447550279133320,80158746419240852000,
%U A384088 24057027574081163030688,7935414295799696292767232,2853706409310576479751168168,1111199574070700473937862463200,465782420445680979210397280524800
%N A384088 a(n) = [x^n] Product_{k=1..n} ((1 + k*x)/(1 - k*x))^4.
%F A384088 a(n) ~ c * d^n * n! / n, where d = 29.85915450232266280267400661836716424701025678171993103713550551... and c = 0.415660498916272367812330643610916948922178337726778287649763513...
%t A384088 Table[SeriesCoefficient[Product[(1+k*x)^4/(1-k*x)^4, {k, 1, n}], {x, 0, n}], {n, 0, 16}]
%Y A384088 Cf. A384031, A384060.
%Y A384088 Cf. A350366, A384086, A384087, A351764.
%K A384088 nonn
%O A384088 0,2
%A A384088 _Vaclav Kotesovec_, May 19 2025