A384090 Number of ordered pairs in the Bruhat order on B_n.
3, 33, 847, 40249, 3089459, 350676009
Offset: 1
Examples
For n=1 the elements are 1 (identity) and s1. The order relation consists of pairs (1, 1), (1, s1), and (s1, s1). So a(1) = 3. For n=2 the line (Hasse) diagram is below. s2*s1*s2*s1 / \ s2*s1*s2 s1*s2*s1 | X | s2*s1 s1*s2 | X | s2 s1 \ / 1 The order relation is formed by 8 reflexive pairs, 12 pairs shown as edges in the diagram, and 13 pairs taken by transitivity: (1, s2*s1), (1, s1*s2), (1, s2*s1*s2), (1, s1*s2*s1), (1, s2*s1*s2*s1), (s2, s2*s1*s2), (s2, s1*s2*s1), (s2, s2*s1*s2*s1), (s1, s2*s1*s2), (s1, s1*s2*s1), (s1, s2*s1*s2*s1), (s2*s1, s2*s1*s2*s1), (s1*s2, s2*s1*s2*s1). So a(2) = 8+12+13 = 33.
References
- A. Bjorner and F. Brenti, Combinatorics of Coxeter Groups, Springer, 2009, 27-64.
Links
- V. V. Deodhar, On Bruhat ordering and weight-lattice ordering for a Weyl group, Indagationes Mathematicae, vol. 81, 1 (1978), 423-435.
- Wikipedia, Bruhat order
Comments