cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384093 a(n) = [x^n] Product_{k=1..n} ((1 + k^2*x)/(1 - k^2*x))^n.

This page as a plain text file.
%I A384093 #6 May 19 2025 11:49:31
%S A384093 1,2,200,100372,141369600,429768373550,2413602498186776,
%T A384093 22580623631512230760,326908252720653523943424,
%U A384093 6930499895312478999698799930,206129722171946147890239366225000,8311703033335976017330775929889992316,441845483828200905036741829941273994080000
%N A384093 a(n) = [x^n] Product_{k=1..n} ((1 + k^2*x)/(1 - k^2*x))^n.
%F A384093 a(n) ~ 2^(n - 1/2) * exp(n + 3/2) * n^(3*n - 1/2) / (sqrt(Pi) * 3^n).
%t A384093 Table[SeriesCoefficient[Product[((1+k^2*x)/(1-k^2*x))^n, {k, 1, n}], {x, 0, n}], {n, 0, 15}]
%Y A384093 Cf. A384091, A384092.
%Y A384093 Cf. A351764, A384043.
%K A384093 nonn
%O A384093 0,2
%A A384093 _Vaclav Kotesovec_, May 19 2025