cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A384103 a(n) = y with minimum |x| >= |y| > 0, such that n = |6xy + x + y|, or 0 if no such x, y exist. If x and -x are solutions, choose x > 0 > y = -x.

Original entry on oeis.org

0, 0, 0, -1, 0, -1, 0, 1, -1, 0, -1, 0, 1, -1, 1, -1, 0, 0, -1, -2, -1, 1, 0, -2, 0, -1, 1, 2, 1, 0, -2, 0, 0, 1, -2, 1, 2, 0, -1, 0, 2, -2, 1, -1, 0, -2, 0, -3, -1, 2, -1, 0, -2, -3, 1, -1, -2, 0, -1, 3, -1, 1, 2, -2, -3, -1, 2, -2, 1, 0, -3, 0, 3, -1, -2, 2, 0, 1, 3, 2, -1, -3, 1, -1, 1, -2, 0, -4, 2, -2
Offset: 1

Views

Author

M. F. Hasler, Jun 20 2025

Keywords

Comments

(6n-1, 6n+1) are twin primes iff a(n) = 0, that is, if there are no nonzero integers x, y such that n = |6xy + x + y|. These n are listed in A002822, the complement is A067611.
The corresponding x-values are listed in A384102.

Examples

			For n = 1, 2 and 3, there are no nonzero x,y such that n = |6xy + x + y|, and (6n-1, 6n+1) = (5, 7), (11, 13) and (17, 19) are indeed twin primes.
For n = 4 we have x = y = -1 such that |6xy + x + y| = |6 - 1 - 1| = 4 and (23, 25) is indeed not a twin prime pair.
		

Crossrefs

Cf. A384102 (the corresponding x-values).
Cf. A002822 (indices of zeros: n such that 6n-1 and 6n+1 are twin primes).
Cf. A077800 (list of twin primes), A060461, A171696 (none among 6n+-1 is prime), A067611 (n = 6xy +- x +- y: 6n-1 or 6n+1 is composite).

Programs

  • Maple
    f:= proc(n) local V, C, t, m, v, r;
           V:= numtheory:-divisors(6*n+1) minus {1, 6*n+1};
           C:= map(u -> `if`(u mod 6 = 1,  [(u-1)/6, ((6*n+1)/u - 1)/6], [(-u-1)/6, (-(6*n+1)/u - 1)/6]), V);
           V:= numtheory:-divisors(6*n-1) minus {1, 6*n-1};
           C:= C union map(u -> `if`(u mod 6 = 1, [(u-1)/6, ((-6*n+1)/u - 1)/6], [(-u-1)/6, ((6*n-1)/u - 1)/6]), V);
           C:= select(t -> abs(t[1]) >= abs(t[2]), C);
           if C = {} then return 0 fi;
           m:= infinity;
           for t in C do
             if abs(t[1]) < m then m:= abs(t[1]); r:= t[2];
             elif abs(t[1]) = m and t[1] > 0 then r:= t[2]
             fi
           od;
           r
     end proc:
    map(f, [$1..100]); # Robert Israel, Jul 21 2025
  • PARI
    apply( {A384103(n)=for(x=1,n\/5, my(p=6*x+1, q=6*x-1, y=if((n-x)%p==0, (n-x)\p, (n+x)%p==0, -(n+x)\p, (n-x)%q==0, (n-x)\q, (n+x)%q==0,-(n+x)\q)); y && abs(y) <= x && return(y))}, [1..90])
Showing 1-1 of 1 results.